Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
2.
Front Plant Sci ; 14: 1327163, 2023.
Article in English | MEDLINE | ID: mdl-38259935

ABSTRACT

Forests are critical in the terrestrial carbon cycle, and the knowledge of their response to ongoing climate change will be crucial for determining future carbon fluxes and climate trajectories. In areas with contrasting seasons, trees form discrete annual rings that can be assigned to calendar years, allowing to extract valuable information about how trees respond to the environment. The anatomical structure of wood provides highly-resolved information about the reaction and adaptation of trees to climate. Quantitative wood anatomy helps to retrieve this information by measuring wood at the cellular level using high-resolution images of wood micro-sections. However, whereas large advances have been made in identifying cellular structures, obtaining meaningful cellular information is still hampered by the correct annual tree ring delimitation on the images. This is a time-consuming task that requires experienced operators to manually delimit ring boundaries. Classic methods of automatic segmentation based on pixel values are being replaced by new approaches using neural networks which are capable of distinguishing structures, even when demarcations require a high level of expertise. Although neural networks have been used for tree ring segmentation on macroscopic images of wood, the complexity of cell patterns in stained microsections of broadleaved species requires adaptive models to accurately accomplish this task. We present an automatic tree ring boundary delineation using neural networks on stained cross-sectional microsection images from beech cores. We trained a UNETR, a combined neural network of UNET and the attention mechanisms of Visual Transformers, to automatically segment annual ring boundaries. Its accuracy was evaluated considering discrepancies with manual segmentation and the consequences of disparity for the goals of quantitative wood anatomy analyses. In most cases (91.8%), automatic segmentation matched or improved manual segmentation, and the rate of vessels assignment to annual rings was similar between the two categories, even when manual segmentation was considered better. The application of convolutional neural networks-based models outperforms human operator segmentations when confronting ring boundary delimitation using specific parameters for quantitative wood anatomy analysis. Current advances on segmentation models may reduce the cost of massive and accurate data collection for quantitative wood anatomy.

3.
Ecol Appl ; 32(5): e2589, 2022 07.
Article in English | MEDLINE | ID: mdl-35333426

ABSTRACT

Tree-ring data has been widely used to inform about tree growth responses to drought at the individual scale, but less is known about how tree growth sensitivity to drought scales up driving changes in forest dynamics. Here, we related tree-ring growth chronologies and stand-level forest changes in basal area from two independent data sets to test if tree-ring responses to drought match stand forest dynamics (stand basal area growth, ingrowth, and mortality). We assessed if tree growth and changes in forest basal area covary as a function of spatial scale and tree taxa (gymnosperm or angiosperm). To this end, we compared a tree-ring network with stand data from the Spanish National Forest Inventory. We focused on the cumulative impact of drought on tree growth and demography in the period 1981-2005. Drought years were identified by the Standardized Precipitation Evapotranspiration Index, and their impacts on tree growth by quantifying tree-ring width reductions. We hypothesized that forests with greater drought impacts on tree growth will also show reduced stand basal area growth and ingrowth and enhanced mortality. This is expected to occur in forests dominated by gymnosperms on drought-prone regions. Cumulative growth reductions during dry years were higher in forests dominated by gymnosperms and presented a greater magnitude and spatial autocorrelation than for angiosperms. Cumulative drought-induced tree growth reductions and changes in forest basal area were related, but initial stand density and basal area were the main factors driving changes in basal area. In drought-prone gymnosperm forests, we observed that sites with greater growth reductions had lower stand basal area growth and greater mortality. Consequently, stand basal area, forest growth, and ingrowth in regions with large drought impacts was significantly lower than in regions less impacted by drought. Tree growth sensitivity to drought can be used as a predictor of gymnosperm demographic rates in terms of stand basal area growth and ingrowth at regional scales, but further studies may try to disentangle how initial stand density modulates such relationships. Drought-induced growth reductions and their cumulative impacts have strong potential to be used as early-warning indicators of regional forest vulnerability.


Subject(s)
Magnoliopsida , Trees , Climate Change , Droughts , Forests
4.
Ecosystems ; 25(1): 215-235, 2022.
Article in English | MEDLINE | ID: mdl-35210936

ABSTRACT

Legacies of past climate conditions and historical management govern forest productivity and tree growth. Understanding how these processes interact and the timescales over which they influence tree growth is critical to assess forest vulnerability to climate change. Yet, few studies address this issue, likely because integrated long-term records of both growth and forest management are uncommon. We applied the stochastic antecedent modelling (SAM) framework to annual tree-ring widths from mixed forests to recover the ecological memory of tree growth. We quantified the effects of antecedent temperature and precipitation up to 4 years preceding the year of ring formation and integrated management effects with records of harvesting intensity from historical forest management archives. The SAM approach uncovered important time periods most influential to growth, typically the warmer and drier months or seasons, but variation among species and sites emerged. Silver fir responded primarily to past climate conditions (25-50 months prior to the year of ring formation), while European beech and Scots pine responded mostly to climate conditions during the year of ring formation and the previous year, although these responses varied among sites. Past management and climate interacted in such a way that harvesting promoted growth in young silver fir under wet and warm conditions and in old European beech under drier and cooler conditions. Our study shows that the ecological memory associated with climate legacies and historical forest management is species-specific and context-dependent, suggesting that both aspects are needed to properly evaluate forest functioning under climate change. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10021-021-00650-8.

6.
Sci Total Environ ; 796: 148930, 2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34378542

ABSTRACT

Forests are being impacted by climate and land-use changes which have altered their productivity and growth. Understanding how tree growth responds to climate in natural and planted stands may provide valuable information to prepare management in sight of climate change. Plantations are expected to show higher sensitivity to climate and lower post-drought resilience than natural stands, due to their lower compositional and structural diversity. We reconstructed and compared the radial growth of six conifers with contrasting ecological and climatic niches (Abies pinsapo, Cedrus atlantica, Pinus sylvestris, Pinus nigra, Pinus pinea, Pinus pinaster) in natural and planted stands subjected to seasonal drought in 40 sites. We quantified the relationships between individual growth variability and climate variables (temperature, precipitation and the SPEI drought index), as well as post-drought resilience. Elevated precipitation during the previous autumn-winter and current spring to early summer enhanced growth in both natural and planted stands of all species. Temperature effects on growth were less consistent: only plantations of A. pinsapo, C. atlantica, P. nigra, P. pinea, P. sylvetris and a natural stand of P. nigra showed negative impacts of summer temperature on growth. Drought reduced growth of all species in both plantations and natural stands, with variations in the temporal scale of the response. Drought constrained growth more severely in natural stands than in plantations of C. atlantica, P. pinaster and P. nigra, whereas the inverse pattern was found for A. pinsapo. Resilience to drought varied between species: natural stands of A. pinsapo, C. atlantica and P. pinaster recovered faster than plantations, while P. pinea plantations recovered faster than natural stands. Overall, plantations did not consistently show a higher sensitivity to climate and a lower capacity to recover after drought. Therefore, plantations are potential tools for mitigating climate warming.


Subject(s)
Pinus , Tracheophyta , Climate Change , Droughts , Forests , Temperature , Trees
7.
Sci Total Environ ; 775: 145860, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-33631566

ABSTRACT

Climate change is increasing the frequency of extreme climate events, causing profound impacts on forest function and composition. Late frost defoliation (LFD) events, the loss of photosynthetic tissues due to low temperatures at the start of the growing season, might become more recurrent under future climate scenarios. Therefore, the detection of changes in late-frost risk in response to global change emerges as a high-priority research topic. Here, we used a tree-ring network from southern European beech (Fagus sylvatica L.) forests comprising Spain, Italy and the Austrian Alps, to assess the incidence of LFD events in the last seven decades. We fitted linear-mixed models of basal area increment using different LFD indicators considering warm spring temperatures and late-spring frosts as fixed factors. We reconstructed major LFD events since 1950, matching extreme values of LFD climatic indicators with sharp tree-ring growth reductions. The last LFD events were validated using remote sensing. Lastly, reconstructed LFD events were climatically and spatially characterized. Warm temperatures before the late-spring frost, defined by high values of growing-degree days, influenced beech growth negatively, particularly in the southernmost populations. The number of LFD events increased towards beech southern distribution edge. Spanish and the southernmost Italian beech forests experienced higher frequency of LFD events since the 1990s. Until then, LFD events were circumscribed to local scales, but since that decade, LFD events became widespread, largely affecting the whole beech southwestern distribution area. Our study, based on in-situ evidence, sheds light on the climatic factors driving LFD occurrence and illustrates how increased occurrence and spatial extension of late-spring frosts might constrain future southern European beech forests' growth and functionality. Observed alterations in the climate-phenology interactions in response to climate change represent a potential threat for temperate deciduous forests persistence in their drier/southern distribution edge.


Subject(s)
Fagus , Austria , Climate Change , Forests , Italy , Spain , Trees
8.
Ecol Appl ; 31(3): e02288, 2021 04.
Article in English | MEDLINE | ID: mdl-33423382

ABSTRACT

Climate warming is driving an advance of leaf unfolding date in temperate deciduous forests, promoting longer growing seasons and higher carbon gains. However, an earlier leaf phenology also increases the risk of late frost defoliation (LFD) events. Compiling the spatiotemporal patterns of defoliations caused by spring frost events is critical to unveil whether the balance between the current advance in leaf unfolding dates and the frequency of LFD occurrence is changing and represents a threaten for the future viability and persistence of deciduous forests. We combined satellite imagery with machine learning techniques to reconstruct the spatiotemporal patterns of LFD events for the 2003-2018 period in the Iberian range of European beech (Fagus sylvatica), at the drier distribution edge of the species. We used MODIS Vegetation Index Products to generate a Normalized Difference Vegetation Index (NDVI) time series for each 250 × 250 m pixel in a total area of 1,013 km2 (16,218 pixels). A semi-supervised approach was used to train a machine learning model, in which a binary classifier called Support Vector Machine with Global Alignment Kernel was used to differentiate between late frost and non-late frost pixels. We verified the obtained estimates with photointerpretation and existing beech tree-ring chronologies to iteratively improve the model. Then, we used the model output to identify topographical and climatic factors that determined the spatial incidence of LFD. During the study period, LFD was a low recurrence phenomenon that occurred every 15.2 yr on average and showed high spatiotemporal heterogeneity. Most LFD events were condensed in 5 yr and clustered in western forests (86.5% in one-fifth of the pixels) located at high elevation with lower than average precipitation. Elevation and longitude were the major LFD risk factors, followed by annual precipitation. The synergistic effects of increasing drought intensity and rising temperature combined with more frequent late frost events may determine the future performance and distribution of beech forests. This interaction might be critical at the beech drier range edge, where the concentration of LFD at high elevations could constrain beech altitudinal shifts and/or favor species with higher resistance to late frosts.


Subject(s)
Fagus , Climate Change , Forests , Incidence , Machine Learning , Seasons , Trees
9.
Glob Chang Biol ; 27(9): 1879-1889, 2021 05.
Article in English | MEDLINE | ID: mdl-33508887

ABSTRACT

Climate warming is expected to positively alter upward and poleward treelines which are controlled by low temperature and a short growing season. Despite the importance of treelines as a bioassay of climate change, a global field assessment and posterior forecasting of tree growth at annual scales is lacking. Using annually resolved tree-ring data located across Eurasia and the Americas, we quantified and modeled the relationship between temperature and radial growth at treeline during the 20th century. We then tested whether this temperature-growth association will remain stable during the 21st century using a forward model under two climate scenarios (RCP 4.5 and 8.5). During the 20th century, growth enhancements were common in most sites, and temperature and growth showed positive trends. Interestingly, the relationship between temperature and growth trends was contingent on tree age suggesting biogeographic patterns in treeline growth are contingent on local factors besides climate warming. Simulations forecast temperature-growth decoupling during the 21st century. The growing season at treeline is projected to lengthen and growth rates would increase and become less dependent on temperature rise. These forecasts illustrate how growth may decouple from climate warming in cold regions and near the margins of tree existence. Such projected temperature-growth decoupling could impact ecosystem processes in mountain and polar biomes, with feedbacks on climate warming.


Subject(s)
Ecosystem , Trees , Climate Change , Cold Temperature , Temperature
10.
Sci Total Environ ; 765: 142752, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33082041

ABSTRACT

Understanding how climate warming and land-use changes determine the vulnerability of forests to drought is critical. However, we still lack: (i) robust quantifications of long-term growth changes during aridification processes, (ii) links between growth decline, changes in forest cover, stand structure and soil conditions, and (iii) forecasts of growth variability to projected climate warming. We investigated tree-ring records over the past 400-700 years, quantified changes in grazing area and forest cover during the 20th century, sampled current stand structure, and analyzed soil organic carbon δ13C and total nitrogen δ15N of Atlas cedar (Cedrus atlantica (Endl.) Manetti ex Carrière) Moroccan forests to characterize their dieback. Atlas cedar forests experienced massive dieback after the 1970s, particularly in the xeric High Atlas region. Forest cover increased in the less xeric regions (Middle Atlas and Rif) by almost 20%, while it decreased about 18% in the High Atlas, where soil δ13C and δ15N showed evidences of grazing. Growth declined and became more variable in response to recent droughts. The relative growth reduction (54%) was higher in the Middle Atlas than elsewhere (Rif, 32%; High Atlas, 36%). Growth synchrony between forests located within the Middle and High Atlas regions increased after the 1970s. Simulations based on a worst-case emission scenario and rapid warming forecast a stronger limitation of growth by low soil moisture in all regions, but particularly in the Middle Atlas and after the mid-21st century. Climate warming is expected to strengthen growth synchronization preceding dieback of conifer forests in xeric regions. The likelihood of similar dieback episodes is further exacerbated by historical degradation of these forests.


Subject(s)
Carbon , Droughts , Animals , Climate Change , Forests , Goats , Soil , Trees
11.
Proc Natl Acad Sci U S A ; 117(47): 29720-29729, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33139533

ABSTRACT

Forest vulnerability to drought is expected to increase under anthropogenic climate change, and drought-induced mortality and community dynamics following drought have major ecological and societal impacts. Here, we show that tree mortality concomitant with drought has led to short-term (mean 5 y, range 1 to 23 y after mortality) vegetation-type conversion in multiple biomes across the world (131 sites). Self-replacement of the dominant tree species was only prevalent in 21% of the examined cases and forests and woodlands shifted to nonwoody vegetation in 10% of them. The ultimate temporal persistence of such changes remains unknown but, given the key role of biological legacies in long-term ecological succession, this emerging picture of postdrought ecological trajectories highlights the potential for major ecosystem reorganization in the coming decades. Community changes were less pronounced under wetter postmortality conditions. Replacement was also influenced by management intensity, and postdrought shrub dominance was higher when pathogens acted as codrivers of tree mortality. Early change in community composition indicates that forests dominated by mesic species generally shifted toward more xeric communities, with replacing tree and shrub species exhibiting drier bioclimatic optima and distribution ranges. However, shifts toward more mesic communities also occurred and multiple pathways of forest replacement were observed for some species. Drought characteristics, species-specific environmental preferences, plant traits, and ecosystem legacies govern postdrought species turnover and subsequent ecological trajectories, with potential far-reaching implications for forest biodiversity and ecosystem services.


Subject(s)
Droughts/mortality , Forests , Biodiversity , Climate Change/mortality , Ecosystem , Species Specificity , Trees/physiology
12.
Glob Chang Biol ; 26(9): 4988-4997, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32574409

ABSTRACT

Long-term tree recruitment dynamics of subalpine forests mainly depend on temperature changes, but little is known about the feedbacks between historical land use and climate. Here, we analyze a southern European, millennium-long dataset of tree recruitment from three high-elevation pine forests located in Mediterranean mountains (Pyrenees, northeastern Spain; Pollino, southern Italy; and Mt. Smolikas, northern Greece). We identify synchronized recruitment peaks in the late 15th and early 16th centuries, following prolonged periods of societal and climate instability. Major European population crises in the 14th and 15th centuries associated with recurrent famines, the Black Death pandemic, and political turmoil are likely to have reduced the deforestation of subalpine environments and caused widespread rewilding. We suggest that a distinct cold phase in the Little Ice Age around 1450 ce could also have accelerated the cessation of grazing pressure, particularly in the Pyrenees, where the demographic crisis was less severe. Most pronounced in the Pyrenees, the enhanced pine recruitment from around 1500-1550 ce coincides with temporarily warmer temperatures associated with a positive phase of the North Atlantic Oscillation. We diagnose that a mixture of human and climate factors has influenced past forest recruitment dynamics in Mediterranean subalpine ecosystems. Our results highlight how complex human-climate interactions shaped forest dynamics during pre-industrial times and provide historical analogies to recent rewilding.


Subject(s)
Ecosystem , Pinus , Climate , Climate Change , Forests , Humans , Italy , Spain , Trees
13.
Tree Physiol ; 40(6): 774-781, 2020 05 30.
Article in English | MEDLINE | ID: mdl-32186730

ABSTRACT

Drought limits the long-distance transport of water in the xylem due to the reduced leaf-to-soil water potential difference and possible embolism-related losses of conductance and of sugars in the phloem due to the higher viscosity of the dehydrated sugary solution. This condition can have cascading effects in water and carbon (C) fluxes that may ultimately cause tree death. We hypothesize that the maintenance of xylem and phloem conductances is fundamental for survival also under reduced resource availability, when trees may produce effective and low C cost anatomical adjustments in the xylem and phloem close to the treetop where most of the hydraulic resistance is concentrated. We analyzed the treetop xylem and phloem anatomical characteristics in coexisting Scots pine trees, symptomatic and non-symptomatic of drought-induced dieback. We selected the topmost 55 cm of the main stem and selected several sampling positions at different distances from the stem apex to test for differences in the axial patterns between the two groups of trees. We measured the annual ring area, the tracheid hydraulic diameter (Dh) and cell wall thickness (CWT), the conductive phloem area and the average lumen diameter of the 20 largest phloem sieve cells (Dph). Declining trees grew less than the non-declining ones, and despite the similar axial scaling of anatomical traits, had larger Dh and lower CWT. Moreover, declining trees had wider Dph. Our results demonstrate that even under drought stress, maintenance of xylem and phloem efficiencies is of primary importance for survival, even if producing fewer larger tracheids may lead to a xylem more vulnerable to embolism formation.


Subject(s)
Pinus , Trees , Droughts , Phloem , Water , Xylem
14.
Nat Commun ; 11(1): 545, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31992718

ABSTRACT

Severe droughts have the potential to reduce forest productivity and trigger tree mortality. Most trees face several drought events during their life and therefore resilience to dry conditions may be crucial to long-term survival. We assessed how growth resilience to severe droughts, including its components resistance and recovery, is related to the ability to survive future droughts by using a tree-ring database of surviving and now-dead trees from 118 sites (22 species, >3,500 trees). We found that, across the variety of regions and species sampled, trees that died during water shortages were less resilient to previous non-lethal droughts, relative to coexisting surviving trees of the same species. In angiosperms, drought-related mortality risk is associated with lower resistance (low capacity to reduce impact of the initial drought), while it is related to reduced recovery (low capacity to attain pre-drought growth rates) in gymnosperms. The different resilience strategies in these two taxonomic groups open new avenues to improve our understanding and prediction of drought-induced mortality.


Subject(s)
Droughts , Trees/growth & development , Adaptation, Physiological , Climate Change , Cycadopsida/growth & development , Ecology , Forests , Magnoliopsida/growth & development , Mortality , Soil/chemistry , Species Specificity , Stress, Physiological , Survival Analysis , Trees/classification , Water
15.
Front Plant Sci ; 10: 1413, 2019.
Article in English | MEDLINE | ID: mdl-31737025

ABSTRACT

Extreme climatic events, such as late frosts in spring during leaf flush, have considerable impacts on the radial growth of temperate broadleaf trees. Albeit, all broadleaved species are potentially vulnerable, damage depends on the particularities of the local climate, the species, and its phenology. The impact of late spring frosts has been widely investigated in the Northern Hemisphere, but the potential incidence in Southern Hemisphere tree species is still poorly known. Here, we reconstruct spring frost occurrence at 30 stands of the deciduous tree Nothofagus pumilio in its northern range of distribution in the Patagonian Andes. We identified tree ring-width reductions at stand level not associated with regional or local drought events, matching unusual minimum spring temperatures during leaf unfolding. Several spring frosts were identified along the northern distribution of N. pumilio, being more frequent in the more continental Argentinean forests. Spring frost in 1980 had the largest spatial extent. The spring frosts in 1980 and 1992 also induced damages in regional orchards. Spring frost damage was associated with (i) a period of unusually warm temperatures at the beginning of leaf unfolding, followed by (ii) freezing temperatures. This study helps expand our understanding of the climatic constraints that could determine the future growth and dynamics of Andean deciduous forests and the potential use of tree-rings as archives of extreme events of spring frosts in northern Patagonia.

16.
Sci Total Environ ; 697: 133989, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31484092

ABSTRACT

The effects of climate change on forest growth are not homogeneous across tree species distribution ranges because of inter-population variability and spatial heterogeneity. Although latitudinal and thermal gradients in growth patterns have been widely investigated, changes in these patterns along longitudinal gradients due to the different timing and severity of regional droughts are less studied. Here, we investigated these responses in Mediterranean Black pine (Pinus nigra Arn.). We built a tree-ring width dataset comprising 77 forests (1202 trees) across the Mediterranean Basin. The biogeographical patterns in growth patterns and the relationships between growth and mean temperature, precipitation, drought and atmospheric circulations patterns (NAO -North Atlantic Oscillation-, SOI -Southern Oscillation Index- and MOI -Mediterranean Oscillation index-) were analyzed. Then, we evaluated the spatial and temporal growth synchrony between and within east and west populations. We found different growth and climate patterns in west vs. east Black pine populations, although in both regions growth was driven by similar temperature and precipitation variables. MOI significantly influenced tree growth, whilst NAO and SOI showed weaker effects. Growth of east and west Black pine populations desynchronized after the 1970s when several and uncoupled regional droughts occurred across the Mediterranean Basin. We detected a climate shift from the 1970s to the 1980s affecting growth patterns, changing growth-climate relationships, and reducing forest growth from west to east Black pine forests. Afterwards, climate and growth of east and west populations became increasingly more divergent. Our findings imply that integral bioclimatic and biogeographical analyses across the species distribution area must be considered to adequately assess the impact of climate change on tree growth under warming and more arid conditions.


Subject(s)
Climate Change , Droughts , Pinus/physiology , Biological Phenomena , Forests , Mediterranean Region
17.
Sci Total Environ ; 690: 1254-1267, 2019 Nov 10.
Article in English | MEDLINE | ID: mdl-31470488

ABSTRACT

Drought-induced forest dieback is causing reductions in productivity, increasing tree mortality and impairing terrestrial carbon uptake worldwide. However, the role played by long-term nutrient imbalances during drought-induced dieback is still unknown. To improve our knowledge on the relationships between dieback and nutrient imbalances, we analysed wood anatomical traits (tree-ring width and wood density), soil properties and long-term chemical information in tree-ring wood (1900-2010) by non-destructive Micro X-ray fluorescence (µXRF) and destructive (ICP-OES) techniques. We studied two major European conifers with ongoing drought-induced dieback in mesic (Abies alba, silver fir) and xeric (Pinus sylvestris, Scots pine) sites. In each site we compared coexisting declining (D) and non-declining (ND) trees. We used dendrochronology and generalized additive and linear mixed models to analyse trends in tree-ring nutrients and their relationships with wood traits. The D trees presented lower growth and higher minimum wood density than ND trees, corresponding to a smaller lumen area of earlywood tracheids and thus a lower theoretical hydraulic conductivity. These differences in growth and wood-anatomy were more marked in silver fir than in Scots pine. Moreover, most of the chemical elements showed higher concentrations in D than in ND trees during the last two-five decades (e.g., Mn, K and Mg), while Ca and Na increased in the sapwood of ND trees. The Mn concentrations, and related ratios (Ca:Mn, Mn:Al and P:Mn) showed the highest differences between D and ND trees for both tree species. These findings suggest that a reduced hydraulic conductivity, consistent with hydraulic impairment, is affecting the use of P in D trees, making them more prone to drought-induced damage. The retrospective quantifications of Mn ratios may be used as early-warning signals of impending dieback.


Subject(s)
Droughts , Environmental Monitoring , Forests , Abies , Climate , Nitrogen , Phosphorus , Pinus sylvestris , Trees
19.
Front Plant Sci ; 9: 1546, 2018.
Article in English | MEDLINE | ID: mdl-30410500

ABSTRACT

A better understanding on the consequences of drought on forests can be reached by paying special attention to their resilience capacity, i.e., the ability to return to a state similar to pre-drought conditions. Nevertheless, extreme droughts may surpass the threshold for the resilience capacity triggering die-off causing multiple changes at varying spatial and temporal scales and affecting diverse processes (tree growth and regeneration, ecosystem productivity). Combining several methodological tools allows reaching a comprehensive characterization of post-drought forest resilience. We evaluated the changes in the abundance, regeneration capacity (seedling abundance), and radial growth (annual tree rings) of the main tree species. We also assessed if drought-induced reductions in growth and regeneration of the dominant tree species scale-up to drops in vegetation productivity by using the Normalized Difference Vegetation Index (NDVI). We studied two conifer forests located in north-eastern Spain which displayed drought-induced die-off during the last decades: a Scots pine (Pinus sylvestris) forest under continental Mediterranean conditions and a Silver fir (Abies alba) forest under more temperate conditions. We found a strong negative impact of a recent severe drought (2012) on Scots pine growth, whereas the coexisting Juniperus thurifera showed positive trends in basal area increment (0.02 ± 0.003 cm2 yr-1). No Scots pine recruitment was observed in sites with intense die-off, but J. thurifera and Quercus ilex recruited. The 2012 drought event translated into a strong NDVI reduction (32% lower than the 1982-2014 average). In Silver fir we found a negative impact of the 2012 drought on short-term radial growth, whilst long-term growth of Silver fir and the coexisting Fagus sylvatica showed positive trends. Growth rates were higher in F. sylvatica (0.04 ± 0.003 cm2 yr-1) than in A. alba (0.02 ± 0.004 cm2 yr-1). These two species recruited beneath declining and non-declining Silver fir trees. The 2012 drought translated into a strong NDVI reduction which lasted until 2013. The results presented here suggest two different post-drought vegetation pathways. In the Scots pine forest, the higher growth and recruitment rates of J. thurifera correspond to a vegetation shift where Scots pine is being replaced by the drought-tolerant juniper. Conversely, in the Silver fir forest there is an increase of F. sylvatica growth and abundance but no local extinction of the Silver fir. Further research is required to monitor the evolution of these forests in the forthcoming years to illustrate the cumulative impacts of drought on successional dynamics.

20.
Glob Chang Biol ; 24(5): 2143-2158, 2018 05.
Article in English | MEDLINE | ID: mdl-29488293

ABSTRACT

Forecasted increase drought frequency and severity may drive worldwide declines in forest productivity. Species-level responses to a drier world are likely to be influenced by their functional traits. Here, we analyse forest resilience to drought using an extensive network of tree-ring width data and satellite imagery. We compiled proxies of forest growth and productivity (TRWi, absolutely dated ring-width indices; NDVI, Normalized Difference Vegetation Index) for 11 tree species and 502 forests in Spain corresponding to Mediterranean, temperate, and continental biomes. Four different components of forest resilience to drought were calculated based on TRWi and NDVI data before, during, and after four major droughts (1986, 1994-1995, 1999, and 2005), and pointed out that TRWi data were more sensitive metrics of forest resilience to drought than NDVI data. Resilience was related to both drought severity and forest composition. Evergreen gymnosperms dominating semi-arid Mediterranean forests showed the lowest resistance to drought, but higher recovery than deciduous angiosperms dominating humid temperate forests. Moreover, semi-arid gymnosperm forests presented a negative temporal trend in the resistance to drought, but this pattern was absent in continental and temperate forests. Although gymnosperms in dry Mediterranean forests showed a faster recovery after drought, their recovery potential could be constrained if droughts become more frequent. Conversely, angiosperms and gymnosperms inhabiting temperate and continental sites might have problems to recover after more intense droughts since they resist drought but are less able to recover afterwards.


Subject(s)
Cycadopsida/physiology , Droughts , Forests , Magnoliopsida/physiology , Mediterranean Region , Spain , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...