Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 452: 114587, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37467963

ABSTRACT

Combined use of cannabis and alcohol is common in adolescents. However, the extent to which such polydrug exposure affects the brain and behaviors remains under-investigated in preclinical studies. This study tested the hypothesis that combined exposure of Δ-9-tetrahydrocannabinol (THC), the main psychoactive constituent of cannabis, and alcohol will have additive effects on cognitive impairments and altered endocannabinoid levels in the hippocampus and frontal cortex. Male Long Evans rats were provided with daily access to cookies laced with oil or dronabinol, a synthetic THC, during adolescence. Three days after discontinuation of edible THC, the effect of orally administered 3 g/kg alcohol on Barnes maze performance was assessed. The results showed that experience with edible THC facilitated the occurrence of increased moving speed on the maze induced by repeated alcohol administration. However, contrasting to the hypothesis, the combined THC and alcohol exposure did not lead to additive deficits in learning and memory on the Barnes maze. While little effect on endocannabinoid levels was observed in the hippocampus, acute abstinence from alcohol significantly reduced endocannabinoid levels in the frontal cortex. In particular, reduction of N-oleoyl ethanolamine (OEA) and N-stearoyl ethanolamine (SEA) were robust and had an interactive effect with discontinuation from edible THC. These findings add to the scarce literature on THC and alcohol associated changes in endocannabinoid levels and provide insights to future investigations on the roles of OEA and SEA on physiology and behaviors following THC and alcohol co-exposure during adolescence.


Subject(s)
Dronabinol , Hallucinogens , Rats , Animals , Male , Dronabinol/pharmacology , Endocannabinoids , Rats, Long-Evans , Ethanol , Frontal Lobe
3.
J Exp Biol ; 224(11)2021 06 01.
Article in English | MEDLINE | ID: mdl-34096599

ABSTRACT

Adult mice emit ultrasonic vocalizations (USVs), sounds above the range of human hearing, during social encounters. While mice alter their vocal emissions between isolated and social contexts, technological impediments have hampered our ability to assess how individual mice vocalize in group social settings. We overcame this challenge by implementing an 8-channel microphone array system, allowing us to determine which mouse emitted individual vocalizations across multiple social contexts. This technology, in conjunction with a new approach for extracting and categorizing a complex, full repertoire of vocalizations, facilitated our ability to directly compare how mice modulate their vocal emissions between isolated, dyadic and group social environments. When comparing vocal emission during isolated and social settings, we found that socializing male mice increase the proportion of vocalizations with turning points in frequency modulation and instantaneous jumps in frequency. Moreover, males change the types of vocalizations emitted between social and isolated contexts. In contrast, there was no difference in male vocal emission between dyadic and group social contexts. Female vocal emission, while predominantly absent in isolation, was also similar during dyadic and group interactions. In particular, there were no differences in the proportion of vocalizations with frequency jumps or turning points. Taken together, the findings lay the groundwork necessary for elucidating the stimuli underlying specific features of vocal emission in mice.


Subject(s)
Acoustics , Vocalization, Animal , Animals , Female , Male , Mice , Social Behavior , Sound , Ultrasonics
4.
Nat Neurosci ; 23(3): 411-422, 2020 03.
Article in English | MEDLINE | ID: mdl-32066980

ABSTRACT

Communication plays an integral role in human social dynamics and is impaired in several neurodevelopmental disorders. Mice are used to study the neurobiology of social behavior; however, the extent to which mouse vocalizations influence social dynamics has remained elusive because it is difficult to identify the vocalizing animal among mice involved in a group interaction. By tracking the ultrasonic vocal behavior of individual mice and using an algorithm developed to group phonically similar signals, we showed that distinct patterns of vocalization emerge as male mice perform specific social actions. Mice dominating other mice were more likely to emit different vocal signals than mice avoiding social interactions. Furthermore, we showed that the patterns of vocal expression influence the behavior of the socially engaged partner but do not influence the behavior of other animals in the cage. These findings clarify the function of mouse communication by revealing a communicative ultrasonic signaling repertoire.


Subject(s)
Animal Communication , Social Behavior , Ultrasonics , Vocalization, Animal/physiology , Aggression , Algorithms , Animals , Female , Individuality , Interpersonal Relations , Male , Mice , Social Dominance , Sound Localization
5.
Sci Rep ; 9(1): 12025, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31427627

ABSTRACT

Cannabis and alcohol co-use is common, and the trend may increase further given the current popularity of cannabis legalization. However, the metabolic consequences of such co-use are unclear. Here, we investigated how co-administration of alcohol and ∆9-tetrahydrocannabinol (THC), the main psychoactive constituent of cannabis, affects body weight and visceral adiposity, and glucose and insulin homeostasis in rats. For 16 consecutive days during adolescence, male rats drank saccharin or alcohol after receiving subcutaneous oil or THC injections in Experiment 1 and voluntarily consumed alcohol, THC edible, or both drugs in Experiment 2. Experiment 1 showed that following abstinence, drug co-exposure reduced visceral fat and the amount of insulin required to clear glucose during an oral glucose tolerance test (OGTT). In Experiment 2, rats received a high-fat diet (HFD) after 3-week abstinence. Although adolescent drug use did not interact with the HFD to worsen hyperglycemia and hyperinsulinemia during an OGTT, HFD-fed rats that co-used alcohol and THC had the lowest insulin levels 75 min after an insulin injection, suggesting an altered rate of insulin secretion and degradation. These results suggest that THC and alcohol co-exposure can distinctly alter the physiology of glucose and insulin homeostasis in a rodent model.


Subject(s)
Alcohol Drinking/adverse effects , Dronabinol/adverse effects , Glucose/metabolism , Homeostasis/drug effects , Insulin/metabolism , Animals , Diet, High-Fat , Glucose Tolerance Test , Insulin Resistance , Male , Obesity/etiology , Obesity/metabolism , Rats
6.
J Neurosci Methods ; 297: 44-60, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29309793

ABSTRACT

BACKGROUND: An integral component in the assessment of vocal behavior in groups of freely interacting animals is the ability to determine which animal is producing each vocal signal. This process is facilitated by using microphone arrays with multiple channels. NEW METHOD AND COMPARISON WITH EXISTING METHODS: Here, we made important refinements to a state-of-the-art microphone array based system used to localize vocal signals produced by freely interacting laboratory mice. Key changes to the system included increasing the number of microphones as well as refining the methodology for localizing and assigning vocal signals to individual mice. RESULTS: We systematically demonstrate that the improvements in the methodology for localizing mouse vocal signals led to an increase in the number of signals detected as well as the number of signals accurately assigned to an animal. CONCLUSIONS: These changes facilitated the acquisition of larger and more comprehensive data sets that better represent the vocal activity within an experiment. Furthermore, this system will allow more thorough analyses of the role that vocal signals play in social communication. We expect that such advances will broaden our understanding of social communication deficits in mouse models of neurological disorders.


Subject(s)
Automation, Laboratory/instrumentation , Automation, Laboratory/methods , Electrical Equipment and Supplies , Pattern Recognition, Automated/methods , Vocalization, Animal , Algorithms , Animals , Computer Simulation , Female , Male , Mice, Inbred C57BL , Mice, Transgenic , Models, Statistical , Sexual Behavior, Animal , Software , Ultrasonics
SELECTION OF CITATIONS
SEARCH DETAIL