Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36984129

ABSTRACT

Focused Ion Beam patterning has become a widely applied technique in the last few decades in the micro- and nanofabrication of quantum materials, representing an important advantage in terms of resolution and versatility. However, ion irradiation can trigger undesired effects on the target material, most of them related to the damage created by the impinging ions that can severely affect the crystallinity of the sample, compromising the application of Focused Ion Beam to the fabrication of micro- and nanosized systems. We focus here on the case of Bi2Se3, a topological material whose unique properties rely on its crystallinity. In order to study the effects of ion irradiation on the structure of Bi2Se3, we irradiated with Ga+ ions the full width of Hall-bar devices made from thin films of this material, with the purpose of inducing changes in the electrical resistance and characterizing the damage created during the process. The results indicate that a relatively high ion dose is necessary to introduce significant changes in the conduction. This ion dose creates medium-range lateral damage in the structure, manifested through the formation of an amorphous region that can extend laterally up to few hundreds of nanometers beyond the irradiated area. This amorphous material is no longer expected to behave as intrinsic Bi2Se3, indicating a spatial limitation for the devices fabricated through this technique.

2.
Nanoscale Adv ; 4(21): 4628-4634, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36341293

ABSTRACT

NanoSQUIDs are quantum sensors that excel in detecting a small change in magnetic flux with high sensitivity and high spatial resolution. Here, we employ resist-free direct-write Ga+ Focused Ion Beam Induced Deposition (FIBID) techniques to grow W-C nanoSQUIDs, and we investigate their electrical response to changes in the magnetic flux. Remarkably, FIBID allows the fast (3 min) growth of 700 nm × 300 nm nanoSQUIDs based on narrow nanobridges (50 nm wide) that act as Josephson junctions. Albeit the SQUIDs exhibit a comparatively low modulation depth and obtain a high inductance, the observed transfer coefficient (output voltage to magnetic flux change) is comparable to other SQUIDs (up to 1300 µV/Φ 0), which correlates with the high resistivity of W-C in the normal state. We discuss here the potential of this approach to reduce the active area of the nanoSQUIDs to gain spatial resolution as well as their integration on cantilevers for scanning-SQUID applications.

3.
ACS Appl Mater Interfaces ; 14(24): 28211-28220, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35671475

ABSTRACT

Metallic nanopatterns are ubiquitous in applications that exploit the electrical conduction at the nanoscale, including interconnects, electrical nanocontacts, and small gaps between metallic pads. These metallic nanopatterns can be designed to show additional physical properties (optical transparency, plasmonic effects, ferromagnetism, superconductivity, heat evacuation, etc.). For these reasons, an intense search for novel lithography methods using uncomplicated processes represents a key on-going issue in the achievement of metallic nanopatterns with high resolution and high throughput. In this contribution, we introduce a simple methodology for the efficient decomposition of Pd3(OAc)6 spin-coated thin films by means of a focused Ga+ beam, which results in metallic-enriched Pd nanostructures. Remarkably, the usage of a charge dose as low as 30 µC/cm2 is sufficient to fabricate structures with a metallic Pd content above 50% (at.) exhibiting low electrical resistivity (70 µΩ·cm). Binary-collision-approximation simulations provide theoretical support to this experimental finding. Such notable behavior is used to provide three proof-of-concept applications: (i) creation of electrical contacts to nanowires, (ii) fabrication of small (40 nm) gaps between large metallic contact pads, and (iii) fabrication of large-area metallic meshes. The impact across several fields of the direct decomposition of spin-coated organometallic films by focused ion beams is discussed.

4.
Nanomaterials (Basel) ; 12(8)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35458074

ABSTRACT

Since its discovery in 1911, superconductivity has represented an equally inciting and fascinating field of study in several areas of physics and materials science, ranging from its most fundamental theoretical understanding, to its practical application in different areas of engineering. The fabrication of superconducting materials can be downsized to the nanoscale by means of Focused Ion/Electron Beam Induced Deposition: nanopatterning techniques that make use of a focused beam of ions or electrons to decompose a gaseous precursor in a single step. Overcoming the need to use a resist, these approaches allow for targeted, highly-flexible nanopatterning of nanostructures with lateral resolution in the range of 10 nm to 30 nm. In this review, the fundamentals of these nanofabrication techniques are presented, followed by a literature revision on the published work that makes use of them to grow superconducting materials, the most remarkable of which are based on tungsten, niobium, molybdenum, carbon, and lead. Several examples of the application of these materials to functional devices are presented, related to the superconducting proximity effect, vortex dynamics, electric-field effect, and to the nanofabrication of Josephson junctions and nanoSQUIDs. Owing to the patterning flexibility they offer, both of these techniques represent a powerful and convenient approach towards both fundamental and applied research in superconductivity.

5.
Nanotechnology ; 33(40)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-34983030

ABSTRACT

The ability to create metallic patterned nanostructures with excellent control of size, shape and spatial orientation is of utmost importance in the construction of next-generation electronic and optical devices as well as in other applications such as (bio)sensors, reactive surfaces for catalysis, etc. Moreover, development of simple, rapid and low-cost fabrication processes of metallic patterned nanostructures is a challenging issue for the incorporation of such devices in real market applications. In this contribution, a direct-write method that results in highly conducting palladium-based nanopatterned structures without the need of applying subsequent curing processes is presented. Spin-coated films of palladium acetate were irradiated with an electron beam to produce palladium nanodeposits (PdNDs) with controlled size, shape and height. The use of different electron doses was investigated and its influence on the PdNDs features determined, namely: (1) thickness of the deposits, (2) atomic percentage of palladium content, (3) oxidation state of palladium in the deposit, (4) morphology of the sample and grain size of the Pd nanocrystals and (5) resistivity. It has been probed that the use of high electron doses, 30000µC cm-2results in the lowest resistivity reported to date for PdNDs, namely 145µΩ cm, which is only one order of magnitude higher than bulk palladium. This result paves the way for development of simplified lithography processes of nanostructured deposits avoiding subsequent post-treatment steps.

6.
Open Res Eur ; 2: 102, 2022.
Article in English | MEDLINE | ID: mdl-37645310

ABSTRACT

Background: The use of a focused ion beam to decompose a precursor gas and produce a metallic deposit is a widespread nanolithographic technique named focused ion beam induced deposition (FIBID). However, such an approach is unsuitable if the sample under study is sensitive to the somewhat aggressive exposure to the ion beam, which induces the effects of surface amorphization, local milling, and ion implantation, among others. An alternative strategy is that of focused electron beam induced deposition (FEBID), which makes use of a focused electron beam instead, and in general yields deposits with much lower metallic content than their FIBID counterparts. Methods: In this work, we optimize the deposition of tungsten-carbon (W-C) nanowires by FEBID to be used as electrical contacts by assessing the impact of the deposition parameters during growth, evaluating their chemical composition, and investigating their electrical response. Results: Under the optimized irradiation conditions, the samples exhibit a metallic content high enough for them to be utilized for this purpose, showing a room-temperature resistivity of 550 µΩ cm and maintaining their conducting properties down to 2 K. The lateral resolution of such FEBID W-C metallic nanowires is 45 nm. Conclusions: The presented optimized procedure may prove a valuable tool for the fabrication of contacts on samples where the FIBID approach is not advised.

7.
Nanomaterials (Basel) ; 11(5)2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33922019

ABSTRACT

Topological insulators are materials with time-reversal symmetric states of matter in which an insulating bulk is surrounded by protected Dirac-like edge or surface states. Among topological insulators, Bi2Se3 has attracted special attention due to its simple surface band structure and its relatively large band gap that should enhance the contribution of its surface to transport, which is usually masked by the appearance of defects. In order to avoid this difficulty, several features characteristic of topological insulators in the quantum regime, such as the weak-antilocalization effect, can be explored through magnetotransport experiments carried out on thin films of this material. Here, we review the existing literature on the magnetotransport properties of Bi2Se3 thin films, paying thorough attention to the weak-antilocalization effect, which is omnipresent no matter the film quality. We carefully follow the different situations found in reported experiments, from the most ideal situations, with a strong surface contribution, towards more realistic cases where the bulk contribution dominates. We have compared the transport data found in literature to shed light on the intrinsic properties of Bi2Se3, finding a clear relationship between the mobility and the phase coherence length of the films that could trigger further experiments on transport in topological systems.

8.
Nanoscale Adv ; 3(19): 5656-5662, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-36133267

ABSTRACT

Emergent technologies are required in the field of nanoelectronics for improved contacts and interconnects at nano and micro-scale. In this work, we report a highly-efficient nanolithography process for the growth of cobalt nanostructures requiring an ultra-low charge dose (15 µC cm-2, unprecedented in single-step charge-based nanopatterning). This resist-free process consists in the condensation of a ∼28 nm-thick Co2(CO)8 layer on a substrate held at -100 °C, its irradiation with a Ga+ focused ion beam, and substrate heating up to room temperature. The resulting cobalt-based deposits exhibit sub-100 nm lateral resolution, display metallic behaviour (room-temperature resistivity of 200 µΩ cm), present ferromagnetic properties (magnetization at room temperature of 400 emu cm-3) and can be grown in large areas. To put these results in perspective, similar properties can be achieved by room-temperature focused ion beam induced deposition and the same precursor only if a 2 × 103 times higher charge dose is used. We demonstrate the application of such an ultra-fast growth process to directly create electrical contacts onto graphene ribbons, opening the route for a broad application of this technology to any 2D material. In addition, the application of these cryo-deposits for hard masking is demonstrated, confirming its structural functionality.

9.
Nanomaterials (Basel) ; 10(10)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32987887

ABSTRACT

The Focused Ion Beam Induced Deposition (FIBID) under cryogenic conditions (Cryo-FIBID) technique is based on obtaining a condensed layer of precursor molecules by cooling the substrate below the condensation temperature of the gaseous precursor material. This condensed layer is irradiated with ions according to a desired pattern and, subsequently, the substrate is heated above the precursor condensation temperature, revealing the deposits with the shape of the exposed pattern. In this contribution, the fast growth of Pt-C deposits by Cryo-FIBID is demonstrated. Here, we optimize various parameters of the process in order to obtain deposits with the lowest-possible electrical resistivity. Optimized ~30 nm-thick Pt-C deposits are obtained using ion irradiation area dose of 120 µC/cm2 at 30 kV. This finding represents a substantial increment in the growth rate when it is compared with deposits of the same thickness fabricated by standard FIBID at room temperature (40 times enhancement). The value of the electrical resistivity in optimized deposits (~4 × 104 µΩ cm) is suitable to perform electrical contacts to certain materials. As a proof of concept of the potential applications of this technology, a 100 µm × 100 µm pattern is carried out in only 43 s of ion exposure (area dose of 23 µC/cm2), to be compared with 2.5 h if grown by standard FIBID at room temperature. The ion trajectories and the deposit composition have been simulated using a binary-collision-approximation Monte Carlo code, providing a solid basis for the understanding of the experimental results.

10.
Nanotechnology ; 30(50): 505302, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31491780

ABSTRACT

Focused electron beam induced deposition (FEBID) is a leading nanolithography technique in terms of resolution and the capability for three-dimensional (3D) growth of functional nanostructures. However, FEBID still presents some limitations with respect to the precise control of the dimensions of the grown nano-objects as well as its use on insulating substrates. In the present work, we overcome both limitations by employing electrically-biased metal structures patterned on the surface of insulating substrates. Such patterned metal structures serve for charge dissipation and also allow the application of spatially-dependent electric fields. We demonstrate that such electric fields can dramatically change the dimensions of the growing 3D nanostructures by acting on the primary electron beam and the generated secondary electrons. In the performed experiments, the diameter of Pt-C and W-C vertical nanowires grown on quartz, MgO and amorphous SiO2 is tuned by application of moderate voltages (up to 200 V) on the patterned metal microstructures during growth, achieving diameters as small as 50 nm. We identify two competing effects arising from the generated electric fields: a slight change in the primary beam focus point and a strong action on the secondary electrons. Beam defocus is exploited to achieve the in situ modulation of the diameter of 3D FEBID structures during growth.

11.
Beilstein J Nanotechnol ; 8: 2106-2115, 2017.
Article in English | MEDLINE | ID: mdl-29090112

ABSTRACT

In this work, we present a detailed investigation of the magnetic properties of cobalt nanospheres grown on cantilever tips by focused electron beam induced deposition (FEBID). The cantilevers are extremely soft and the cobalt nanospheres are optimized for magnetic resonance force microscopy (MRFM) experiments, which implies that the cobalt nanospheres must be as small as possible while bearing high saturation magnetization. It was found that the cobalt content and the corresponding saturation magnetization of the nanospheres decrease for nanosphere diameters less than 300 nm. Electron holography measurements show the formation of a magnetic vortex state in remanence, which nicely agrees with magnetic hysteresis loops performed by local magnetometry showing negligible remanent magnetization. As investigated by local magnetometry, optimal behavior for high-resolution MRFM has been found for cobalt nanospheres with a diameter of ≈200 nm, which present atomic cobalt content of ≈83 atom % and saturation magnetization of 106 A/m, around 70% of the bulk value. These results represent the first comprehensive investigation of the magnetic properties of cobalt nanospheres grown by FEBID for application in MRFM.

12.
Small ; 13(7)2017 02.
Article in English | MEDLINE | ID: mdl-27982517

ABSTRACT

Nascent molecular electronic devices, based on monolayer Langmuir-Blodgett films sandwiched between two carbonaceous electrodes, have been prepared. Tightly packed monolayers of 4-((4-((4-ethynylphenyl)ethynyl)phenyl)ethynyl)benzoic acid are deposited onto a highly oriented pyrolytic graphite electrode. An amorphous carbon top contact electrode is formed on top of the monolayer from a naphthalene precursor using the focused electron beam induced deposition technique. This allows the deposition of a carbon top-contact electrode with well-defined shape, thickness, and precise positioning on the film with nm resolution. These results represent a substantial step toward the realization of integrated molecular electronic devices based on monolayers and carbon electrodes.

13.
ACS Nano ; 9(6): 6139-46, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-26035337

ABSTRACT

The successful application of focused electron (and ion) beam induced deposition techniques for the growth of nanowires on flexible and transparent polycarbonate films is reported here. After minimization of charging effects in the substrate, sub-100 nm-wide Pt, W, and Co nanowires have been grown and their electrical conduction is similar compared to the use of standard Si-based substrates. Experiments where the substrate is bent in a controlled way indicate that the electrical conduction is stable up to high bending angles, >50°, for low-resistivity Pt nanowires grown by the ion beam. On the other hand, the resistance of Pt nanowires grown by the electron beam changes significantly and reversibly with the bending angle. Aided by the substrate transparency, a diffraction grating in transmission mode has been built based on the growth of an array of Pt nanowires that shows sharp diffraction spots. The set of results supports the large potential of focused beam deposition as a high-resolution nanolithography technique on transparent and flexible substrates. The most promising applications are expected in flexible nano-optics and nanoplasmonics, flexible electronics, and nanosensing.

14.
Phys Chem Chem Phys ; 15(14): 5132-9, 2013 Apr 14.
Article in English | MEDLINE | ID: mdl-23450166

ABSTRACT

Bismuth nanostructures of initial lateral size of about 150 nm were successfully electromigrated at room temperature under high vacuum conditions through the application of voltage ramps and accurate control of their conductance. The imaging of the nanogap formation was followed by scanning electron microscopy. An appropriate design of the initial Bi nanostructures has made the electromigration process of semimetallic Bi feasible. Beyond the intrinsic interest in the generation of Bi structures with size tailored at the nanoscale, remarkable features have been observed in the time-dependent conductance curves of the Bi nanoconstrictions. In particular, sub-quantum conductance plateaus can be detected before the rupture of the constriction. An alternative procedure to study the transport through Bi nanoconstrictions has been explored using a focused-Ga-ion etching process with simultaneous control of the conductance. This second approach confirms the transport behavior observed in electromigrated Bi nanoconstrictions.

SELECTION OF CITATIONS
SEARCH DETAIL
...