Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Cancer Immunol Immunother ; 73(2): 21, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38279995

ABSTRACT

On August 30, 2023, experts from Germany and abroad met to discuss the successes and challenges of cytokine-induced killer cell (CIK) therapy, that recently celebrated its 30th anniversary providing treatment for cancer. This first virtual conference was hosted by CIO Bonn, a certified Comprehensive Cancer Center (CCC) funded by German Cancer Aid (DKH). In addition to keynote speakers involved in CIK cell clinical trials or optimized preclinical models to improve this adoptive cell immunotherapy, more than 100 attendees from around the world also participated in this event. Initiatives to establish the International Society of CIK Cells (ISCC) and a stronger CIK cell network guiding preclinical research and future clinical trials were also announced.


Subject(s)
Cytokine-Induced Killer Cells , Neoplasms , Humans , Immunotherapy, Adoptive , Neoplasms/therapy , Cytokines , Germany , Immunotherapy
2.
Expert Opin Ther Targets ; 28(1-2): 17-28, 2024.
Article in English | MEDLINE | ID: mdl-38234142

ABSTRACT

INTRODUCTION: Soft tissue sarcomas are a group of rare, mesenchymal tumors characterized by dismal prognosis in advanced/metastatic stages. Knowledge of their molecular determinants is still rather limited. However, in recent years, epigenetic regulation - the modification of gene expression/function without DNA sequence variation - has emerged as a key player both in sarcomagenesis and sarcoma progression. AREAS COVERED: Herein, we describe and review the main epigenetic mechanisms involved in chromatin remodeling and their role as disease drivers in different soft tissue sarcoma histotypes, focusing on epithelioid sarcoma, synovial sarcoma, and malignant peripheral nerve sheath tumors. Focusing on chromatin-remodeling complexes, we provide an in-depth on the role of BAF complex alterations in these soft tissue sarcoma histotypes. In parallel, we highlight current state-of-the-art and future perspectives in the development of rational, innovative treatments leveraging on epigenetic dysregulation in soft tissue sarcomas. EXPERT OPINION: Therapeutic options for metastatic/advanced sarcomas are to date very limited and largely represented by cytotoxic agents, with only modest results. In the continuous attempt to find novel targets and innovative, effective drugs, epigenetic mechanisms represent an emerging and promising field of research, especially for malignant peripheral nerve sheath tumors, epithelioid and synovial sarcoma.


Subject(s)
Neurofibrosarcoma , Sarcoma, Synovial , Sarcoma , Soft Tissue Neoplasms , Humans , Sarcoma, Synovial/drug therapy , Sarcoma, Synovial/genetics , Epigenesis, Genetic , Sarcoma/drug therapy , Sarcoma/genetics , Soft Tissue Neoplasms/drug therapy , Soft Tissue Neoplasms/genetics
3.
Cancers (Basel) ; 15(21)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37958430

ABSTRACT

BACKGROUND: The immunotherapy of head and neck cancer induces a limited rate of long-term survivors at the cost of treating many patients exposed to toxicity without benefit, regardless of PD-L1 expression. The identification of better biomarkers is warranted. We analyzed a panel of cytokines, chemokines and growth factors, hereinafter all referred to as 'cytokines', as potential biomarkers in patients with head and neck cancer treated with nivolumab. MATERIALS AND METHODS: A total of 18 circulating cytokines were analyzed. Samples were gathered at baseline (T0) and after 3 courses of nivolumab (T1) in patients with relapsed/metastatic disease. The data extracted at T0 were linked to survival; the comparison of T0-T1 explored the effect of immunotherapy. RESULTS: A total of 22 patients were accrued: 64% current heavy smokers, 36% female and 14% had PS = 2. At T0, ROC analysis showed that IL-6, IL-8, IL-10 and TGF-ß were higher in patients with poor survival. Cox analysis demonstrated that only patients with the IL-6 and TGF-ß discriminate had good or poor survival, respectively. Longitudinal increments of CCL-4, IL-15, IL-2 and CXCL-10 were observed in all patients during nivolumab treatment. CONCLUSION: In this small population with poor clinical characteristics, this study highlights the prognostic role of IL-6 and TGF-ß. Nivolumab treatment is associated with a positive modulation of some Th1 cytokines, but it does not correlate with the outcome.

4.
Clin Cancer Res ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37992307

ABSTRACT

PURPOSE: Combination of chemotherapy (CT) with programmed cell death (PD)-1 blockade is a front-line treatment for lung cancer. However, it remains unknown whether and how CT affects the response of exhausted CD8 T cells to PD-1 blockade. EXPERIMENTAL DESIGN: We used the well-established mouse model of T cell exhaustion with chronic lymphocytic choriomeningitis virus (LCMV) infection to assess the effect of CT (cisplatin+pemetrexed) on T cell response to PD-1 blockade, in the absence of the impact of CT on antigen release and presentation observed in tumor models. RESULTS: When concomitantly administered with PD-1 blockade, CT affected the differentiation path of LCMV-specific CD8 T cells from stem-like to transitory effector cells, thereby reducing their expansion and production of interferon (IFN)-γ. After combination treatment, these restrained effector responses resulted in impaired viral control, compared to PD-1 blockade alone. The sequential combination strategy, where PD-1 blockade followed CT, proved to be superior to the concomitant combination, preserving the proliferative response of exhausted CD8 T cells to PD-1 blockade. Our findings suggest that the stem-like CD8 T cells themselves are relatively unaffected by CT partly because they are quiescent and maintained by slow self-renewal at the steady state. However, upon the proliferative burst mediated by PD-1 blockade, the accelerated differentiation and self-renewal of stem-like cells may be curbed by concomitant CT, ultimately resulting in impaired overall CD8 T cell effector functions. CONCLUSIONS: In a translational context, we provide a proof-of-concept to consider optimizing the timing of chemo-immunotherapy strategies for improved CD8 T cell functions.

5.
J Exp Clin Cancer Res ; 42(1): 310, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37993874

ABSTRACT

BACKGROUND: Even acknowledging the game-changing results achieved in the treatment of metastatic melanoma with the use of immune checkpoint inhibitors (ICI), a large proportion of patients (40-60%) still fail to respond or relapse due to the development of resistance. Alterations in the expression of Human Leukocyte Antigen class I (HLA-I) molecules are considered to play a major role in clinical resistance to ICI. Cellular immunotherapy with HLA-independent CAR-redirected lymphocytes is a promising alternative in this challenging setting and dedicated translational models are needed. METHODS: In this study, we propose an HLA-independent therapeutic strategy with Cytokine Induced Killer lymphocytes (CIK) genetically engineered with a Chimeric Antigen Receptor (CAR) targeting the tumor antigen CSPG4 as effector mechanism. We investigated the preclinical antitumor activity of CSPG4-CAR.CIK in vitro and in a xenograft murine model focusing on patient-derived melanoma cell lines (Mel) with defective expression of HLA-I molecules. RESULTS: We successfully generated CSPG4-CAR.CIK from patients with metastatic melanoma and reported their intense activity in vitro against a panel of CSPG4-expressing patient-derived Mel. The melanoma killing activity was intense, even at very low effector to target ratios, and not influenced by the expression level (high, low, defective) of HLA-I molecules on target cells. Furthermore, CAR.CIK conditioned medium was capable of upregulating the expression of HLA-I molecules on melanoma cells. A comparable immunomodulatory effect was replicated by treatment of Mel cells with exogenous IFN-γ and IFN-α. The antimelanoma activity of CSPG4-CAR.CIK was successfully confirmed in vivo, obtaining a significant tumor growth inhibition of an HLA-defective Mel xenograft in immunodeficient mice. CONCLUSIONS: In this study we reported the intense preclinical activity of CSPG4-CAR.CIK against melanoma, including those with low or defective HLA-I expression. Our findings support CSPG4 as a valuable CAR target in melanoma and provide translational rationale for clinical studies exploring CAR-CIK cellular immunotherapies within the challenging setting of patients not responsive or relapsing to immune checkpoint inhibitors.


Subject(s)
Melanoma , Receptors, Chimeric Antigen , Humans , Animals , Mice , Cytokines , Receptors, Chimeric Antigen/genetics , Immune Checkpoint Inhibitors , Immunotherapy, Adoptive/methods , Neoplasm Recurrence, Local , Melanoma/genetics , Melanoma/therapy , Immunotherapy , Lymphocytes/pathology , Membrane Proteins , Chondroitin Sulfate Proteoglycans
6.
Mol Oncol ; 17(8): 1474-1491, 2023 08.
Article in English | MEDLINE | ID: mdl-37183363

ABSTRACT

The introduction of targeted therapies represented one of the most significant advances in the treatment of BRAFV600E melanoma. However, the onset of acquired resistance remains a challenge. Previously, we showed in mouse xenografts that vascular endothelial growth factor (VEGFA) removal enhanced the antitumor effect of BRAF inhibition through the recruitment of M1 macrophages. In this work, we explored the strategy of VEGFA/BRAF inhibition in immunocompetent melanoma murine models. In BRAF mutant D4M melanoma tumors, VEGFA/BRAF targeting reshaped the tumor microenvironment, largely by stimulating infiltration of M1 macrophages and CD8+ T cells, and sensitized tumors to immune checkpoint blockade (ICB). Furthermore, we reported that the association of VEGFA/BRAF targeting with anti-PD-1 antibody (triple therapy) resulted in a durable response and enabled complete tumor eradication in 50% of the mice, establishing immunological memory. Neutralization and CRISPR-Cas-mediated editing of granulocyte-macrophage colony-stimulating factor (GM-CSF) abrogated antitumor response prompted by triple therapy and identified GM-CSF as the cytokine instrumental in M1-macrophage recruitment. Our data suggest that VEGFA/BRAF targeting in melanoma induces the activation of innate and adaptive immunity and prepares tumors for ICB. Our study contributes to understanding the tumor biology of BRAFV600E melanoma and suggests VEGFA as therapeutic target.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Melanoma , Humans , Animals , Mice , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , CD8-Positive T-Lymphocytes/metabolism , Vascular Endothelial Growth Factor A/metabolism , Melanoma/metabolism , Macrophages/metabolism , Tumor Microenvironment
7.
Cancers (Basel) ; 15(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36831376

ABSTRACT

BACKGROUND: There is compelling need for novel biomarkers to predict response to PARP inhibitors (PARPi) in BRCA wild-type (WT) ovarian cancer (OC). METHODS: MITO 37 is a multicenter retrospective study aiming at correlating Ki67 expression at diagnosis with a clinical outcome following platinum treatment and PARPi maintenance. Clinical data were collected from high grade serous or endometroid BRCAWT OC treated with niraparib or rucaparib maintenance between 2010-2021 in 15 centers. Ki67 expression was assessed locally by certified pathologists on formalin-fixed paraffin embedded (FFPE) tissues. Median Ki67 was used as a cut-off. RESULTS: A total of 136 patients were eligible and included in the analysis. Median Ki67 was 45.7% (range 1.0-99.9). The best response to platinum according to median Ki67 was 26.5% vs. 39.7% complete response (CR), 69.1% vs. 58.8% partial response (PR), 4.4% vs. 1.5% stable disease (SD). The best response to PARPi according to median Ki67 was 19.1% vs. 36.8% CR, 26.5% vs. 26.5% PR, 26.5 vs. 25% SD, 27.9% vs. 16.2% progressive disease (PD). No statistically significant differences in progression free survival (PFS) and overall survival (OS) were identified between low and high Ki67. PFS and OS are in line with registration trials. CONCLUSIONS: Ki67 at diagnosis did not discriminate responders to PARPi.

8.
Br J Haematol ; 200(1): 64-69, 2023 01.
Article in English | MEDLINE | ID: mdl-36155897

ABSTRACT

Cytokine-induced killer lymphocytes (CIK) are a promising alternative to conventional donor lymphocyte infusion (DLI), following allogeneic haematopoietic cell transplantation (HCT), due to their intrinsic anti-tumour activity and reduced risk of graft-versus-host disease (GVHD). We explored the feasibility, anti-leukaemic activity and alloreactive risk of CIK generated from full-donor chimaeric (fc) patients and genetically redirected by a chimeric antigen receptor (CAR) (fcCAR.CIK) against the leukaemic target CD44v6. fcCAR.CIK were successfully ex-vivo expanded from leukaemic patients in complete remission after HCT confirming their intense preclinical anti-leukaemic activity without enhancing the alloreactivity across human leukocyte antigen (HLA) barriers. Our study provides translational bases to support clinical studies with fcCAR.CIK, a sort of biological bridge between the autologous and allogeneic sources, as alternative DLI following HCT.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Receptors, Chimeric Antigen , Humans , Feasibility Studies , Transplantation, Homologous , HLA Antigens , Immunotherapy, Adoptive , Graft vs Host Disease/etiology , Graft vs Host Disease/therapy , Histocompatibility Antigens Class II
9.
Clin Cancer Res ; 29(3): 621-634, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36165915

ABSTRACT

PURPOSE: Antibodies against the lymphocyte PD-1 (aPD-1) receptor are cornerstone agents for advanced non-small cell lung cancer (NSCLC), based on their ability to restore the exhausted antitumor immune response. Our study reports a novel, lymphocyte-independent, therapeutic activity of aPD-1 against NSCLC, blocking the tumor-intrinsic PD-1 receptors on chemoresistant cells. EXPERIMENTAL DESIGN: PD-1 in NSCLC cells was explored in vitro at baseline, including stem-like pneumospheres, and following treatment with cisplatin both at transcriptional and protein levels. PD-1 signaling and RNA sequencing were assessed. The lymphocyte-independent antitumor activity of aPD-1 was explored in vitro, by PD-1 blockade and stimulation with soluble ligand (PD-L1s), and in vivo within NSCLC xenograft models. RESULTS: We showed the existence of PD-1+ NSCLC cell subsets in cell lines and large in silico datasets (Cancer Cell Line Encyclopedia and The Cancer Genome Atlas). Cisplatin significantly increased PD-1 expression on chemo-surviving NSCLC cells (2.5-fold P = 0.0014), while the sequential treatment with anti-PD-1 Ab impaired their recovery after chemotherapy. PD-1 was found to be associated with tumor stemness features. PD-1 expression was enhanced in NSCLC stem-like pneumospheres (P < 0.0001), significantly promoted by stimulation with soluble PD-L1 (+27% ± 4, P < 0.0001) and inhibited by PD-1 blockade (-30% ± 3, P < 0.0001). The intravenous monotherapy with anti-PD-1 significantly inhibited tumor growth of NSCLC xenografts in immunodeficient mice, without the contribution of the immune system, and delayed the occurrence of chemoresistance when combined with cisplatin. CONCLUSIONS: We report first evidence of a novel lymphocyte-independent activity of anti-PD-1 antibodies in NSCLC, capable of inhibiting chemo-surviving NSCLC cells and exploitable to contrast disease relapses following chemotherapy. See related commentary by Augustin et al., p. 505.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Mice , Animals , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Cisplatin/pharmacology , Cisplatin/therapeutic use , Neoplasm Recurrence, Local , Lymphocytes/metabolism , Cell Line, Tumor
10.
Cancers (Basel) ; 16(1)2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38201531

ABSTRACT

The introduction of immunotherapy revolutionized the treatment landscape in metastatic melanoma. Despite the impressive results associated with immune checkpoint inhibitors (ICIs), only a portion of patients obtain a response to this treatment. In this scenario, the research of predictive factors is fundamental to identify patients who may have a response and to exclude patients with a low possibility to respond. These factors can be host-associated, immune system activation-related, and tumor-related. Patient-related factors can vary from data obtained by medical history (performance status, age, sex, body mass index, concomitant medications, and comorbidities) to analysis of the gut microbiome from fecal samples. Tumor-related factors can reflect tumor burden (metastatic sites, lactate dehydrogenase, C-reactive protein, and circulating tumor DNA) or can derive from the analysis of tumor samples (driver mutations, tumor-infiltrating lymphocytes, and myeloid cells). Biomarkers evaluating the immune system activation, such as IFN-gamma gene expression profile and analysis of circulating immune cell subsets, have emerged in recent years as significantly correlated with response to ICIs. In this manuscript, we critically reviewed the most updated literature data on the landscape of predictive factors in metastatic melanoma treated with ICIs. We focus on the principal limits and potentiality of different methods, shedding light on the more promising biomarkers.

11.
Biomedicines ; 10(10)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36289890

ABSTRACT

The outbreak of novel coronavirus disease 2019 (COVID-19) has exacted a disproportionate toll on cancer patients. The effects of anticancer treatments and cancer patients' characteristics shared significant responsibilities for this dismal outcome; however, the underlying immunopathological mechanisms are far from being completely understood. Indeed, despite their different etiologies, SARS-CoV-2 infection and cancer unexpectedly share relevant immunobiological connections. In the pathogenesis and natural history of both conditions, there emerges the centrality of the immune response, orchestrating the timed appearance, functional and dysfunctional roles of multiple effectors in acute and chronic phases. A significant number (more than 600) of observational and interventional studies have explored the interconnections between COVID-19 and cancer, focusing on aspects as diverse as psychological implications and prognostic factors, with more than 4000 manuscripts published so far. In this review, we reported and discussed the dynamic behavior of the main cytokines and immune system signaling pathways involved in acute vs. early, and chronic vs. advanced stages of SARS-CoV-2 infection and cancer. We highlighted the biological similarities and active connections within these dynamic disease scenarios, exploring and speculating on possible therapeutic crossroads from one setting to the other.

12.
Cells ; 11(20)2022 10 14.
Article in English | MEDLINE | ID: mdl-36291098

ABSTRACT

BACKGROUND: Lung cancer (LC) tissue for immunological characterization is often scarce. We explored and compared T cell characteristics between broncho-alveolar lavage from tumor affected (t-BAL) and contralateral lung (cl-BAL), with matched peripheral blood (PB). METHODS: BAL and PB were collected during bronchoscopy for diagnostic and/or therapeutic purposes in patients with monolateral primary lesion. RESULTS: Of 33 patients undergoing BAL and PB sampling, 21 had histologically-confirmed LC. Most cases were locally-advanced or metastatic non-small cell LC. T cell characteristics were not significantly different in t-BAL vs. cl-BAL. Compared to PB, CD8 T cells in BAL presented features of immune activation and exhaustion (high PD-1, low IFN-g production). Accordingly, regulatory CD4 T cells were also higher in BAL vs. PB. When dichotomizing T cell density in t-BAL in high and low, we found that PD-L1 expression in LC was associated with T cell density in t-BAL. T-BAL with high T cell density had higher %IFN-g+CD8 T cells and lower %T-regs. CONCLUSION: In BAL from advanced LC patients, T cells present features of exhaustion. T cells in t-BAL could be the best surrogate of tumor-infiltrating T cell, and future studies should evaluate T cell phenotype and density as potential biomarkers for cancer immunotherapy outcome.


Subject(s)
Lung Neoplasms , T-Lymphocyte Subsets , Humans , B7-H1 Antigen/metabolism , Bronchoalveolar Lavage Fluid , Interferon-gamma/metabolism , Lung Neoplasms/immunology , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocyte Subsets/immunology
13.
J Exp Clin Cancer Res ; 41(1): 309, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36271379

ABSTRACT

BACKGROUND: Aberrant activation of the MET receptor in cancer is sustained by genetic alterations or, more frequently, by transcriptional upregulations. A fraction of MET-amplified or mutated tumors are sensible to MET targeting agents, but their responsiveness is typically short-lasting, as secondary resistance eventually occurs. Since in the absence of genetic alterations MET is usually not a tumor driver, MET overexpressing tumors are not/poorly responsive to MET targeted therapies. Consequently, the vast majority of tumors exhibiting MET activation still represent an unmet medical need. METHODS: Here we propose an immunotherapy strategy based on T lymphocytes expressing a Chimeric Antigen Receptor (CAR) targeting MET overexpressing tumors of different histotypes. We engineered two different MET-CAR constructs and tested MET-CAR-T cell cytotoxic activity against different MET overexpressing models, including tumor cell lines, primary cancer cells, organoids, and xenografts in immune-deficient mice. RESULTS: We proved that MET-CAR-T exerted a specific cytotoxic activity against MET expressing cells. Cell killing was proportional to the level of MET expressed on the cell surface. While CAR-T cytotoxicity was minimal versus cells carrying MET at physiological levels, essentially sparing normal cells, the activity versus MET overexpressing tumors was robust, significantly controlling tumor cell growth in vitro and in vivo. Notably, MET-CAR-T cells were also able to brake acquired resistance to MET targeting agents in MET amplified cancer cells carrying secondary mutations in downstream signal transducers. CONCLUSIONS: We set and validated at the pre-clinical level a MET-CAR immunotherapy strategy potentially beneficial for cancers not eligible for MET targeted therapy with inhibitory molecules, including those exhibiting primary or secondary resistance.


Subject(s)
Receptors, Chimeric Antigen , Humans , Mice , Animals , Immunotherapy , T-Lymphocytes , Cell Line, Tumor , Heterografts , Xenograft Model Antitumor Assays
14.
Front Oncol ; 12: 844250, 2022.
Article in English | MEDLINE | ID: mdl-36110934

ABSTRACT

Background: Advanced and unresectable bone and soft tissue sarcomas (BSTS) still represent an unmet medical need. We demonstrated that the alkylating agent trabectedin and the PARP1-inhibitor olaparib display antitumor activity in BSTS preclinical models. Moreover, in a phase Ib clinical trial (NCT02398058), feasibility, tolerability and encouraging results have been observed and the treatment combination is currently under study in a phase II trial (NCT03838744). Methods: Differential expression of genes involved in DNA Damage Response and Repair was evaluated by Nanostring® technology, extracting RNA from pre-treatment tumor samples of 16 responder (≥6-month progression free survival) and 16 non-responder patients. Data validation was performed by quantitative real-time PCR, RNA in situ hybridization, and immunohistochemistry. The correlation between the identified candidate genes and both progression-free survival and overall survival was investigated in the publicly available dataset "Sarcoma (TCGA, The Cancer Genome Atlas)". Results: Differential RNA expression analysis revealed an 8-gene signature (CDKN2A, PIK3R1, SLFN11, ATM, APEX2, BLM, XRCC2, MAD2L2) defining patients with better outcome upon trabectedin+olaparib treatment. In responder vs. non-responder patients, a significant differential expression of these genes was further confirmed by RNA in situ hybridization and by qRT-PCR and immunohistochemistry in selected experiments. Correlation between survival outcomes and genetic alterations in the identified genes was shown in the TCGA sarcoma dataset. Conclusions: This work identified an 8-gene expression signature to improve prediction of response to trabectedin+olaparib combination in BSTS. The predictive role of these potential biomarkers warrants further investigation.

15.
Int J Mol Sci ; 23(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36142281

ABSTRACT

Gastrointestinal stromal tumors (GISTs) are rare, mesenchymal tumors of the gastrointestinal tract, characterized by either KIT or PDGFRA mutation in about 85% of cases. KIT/PDGFRA wild type gastrointestinal stromal tumors (wtGIST) account for the remaining 15% of GIST and represent an unmet medical need: their prevalence and potential medical vulnerabilities are not completely defined, and effective therapeutic strategies are still lacking. In this study we set a patient-derived preclinical model of wtGIST to investigate their phenotypic features, along with their susceptibility to cellular immunotherapy with cytokine-induced killer lymphocytes (CIK) and interferons (IFN). We generated 11 wtGIST primary cell lines (wtGISTc). The main CIK ligands (MIC A/B; ULBPs), along with PD-L1/2, were expressed by wtGISTc and the expression of HLA-I molecules was preserved. Patient-derived CIK were capable of intense killing in vitro against wtGISTc resistant to both imatinib and sunitinib. We found that CIK produce a high level of granzyme B, IFNα and IFNγ. CIK-conditioned supernatant was responsible for part of the observed tumoricidal effect, along with positive bystander modulatory activities enhancing the expression of PD-L1/2 and HLA-I molecules. IFNα, but not In, had direct antitumor effects on 50% (4/8) of TKI-resistant wtGISTc, positively correlated with the tumor expression of IFN receptors. wtGIST cells that survived IFNα were still sensitive to CIK immunotherapy. Our data support the exploration of CIK immunotherapy in clinical studies for TKI-resistant wtGIST, proposing reevaluation for IFNα within this challenging setting.


Subject(s)
Antineoplastic Agents , Gastrointestinal Stromal Tumors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , B7-H1 Antigen/genetics , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/therapy , Granzymes/genetics , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Immunotherapy , Interferons/genetics , Lymphocytes , Mutation , Proto-Oncogene Proteins c-kit/genetics , Receptor Protein-Tyrosine Kinases/genetics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Sunitinib/therapeutic use
16.
Bioengineering (Basel) ; 10(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36671624

ABSTRACT

Adoptive cell therapy in solid tumors, such as melanoma, is impaired, but little is known about the role that the fibroblasts present in the tumor microenvironment could exert. However, the mechanism at play is not well understood, partly due to the lack of relevant pre-clinical models. Three-dimensional culture and microfluidic chips are used to recapitulate the dynamic interactions among different types of cells in the tumor microenvironment in controlled and physiological settings. In this brief report, we propose a reductionist melanoma-on-a-chip model for evaluating the essential role of fibroblasts in the antitumor activity of lymphocytes. To this end, 3D melanoma spheroids were monocultured and co-cultured with human dermal fibroblasts and the NK-92 cell migration towards the tumor compartment was tested in a commercially available microfluidic device. Utilizing confocal microscopy, we observed the different recruitment of NK-92 cells in the presence and absence of fibroblasts. Our results show that fibroblasts' presence inhibits immune effector recruiting by exploiting a 3D pre-clinical tumor model.

17.
Cancers (Basel) ; 13(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34944915

ABSTRACT

Drug-induced tumor mutational burden (TMB) may contribute to unleashing the immune response in relatively "immune-cold" tumors, such as sarcomas. We previously showed that PARP1 inhibition perpetuates the DNA damage induced by the chemotherapeutic agent trabectedin in both preclinical models and sarcoma patients. In the present work, we explored acquired genetic changes in DNA repair genes, mutational signatures, and TMB in a translational platform composed of cell lines, xenografts, and tumor samples from patients treated with trabectedin and olaparib combination, compared to cells treated with temozolomide, an alkylating agent that induces hypermutation. Whole-exome and targeted panel sequencing data analyses revealed that three cycles of trabectedin and olaparib combination neither affected the mutational profiles, DNA repair gene status, or copy number alterations, nor increased TMB both in homologous recombinant-defective and proficient cells or in xenografts. Moreover, TMB was not increased in tumor specimens derived from trabectedin- and olaparib-treated patients (5-6 cycles) when compared to pre-treatment biopsies. Conversely, repeated treatments with temozolomide induced a massive TMB increase in the SJSA-1 osteosarcoma model. In conclusion, a trabectedin and olaparib combination did not show mutagenic effects and is unlikely to prime subsequent immune-therapeutic interventions based on TMB increase. On the other hand, these findings are reassuring in the increasing warning of treatment-induced hematologic malignancies correlated to PARP1 inhibitor use.

18.
Cells ; 10(11)2021 10 26.
Article in English | MEDLINE | ID: mdl-34831119

ABSTRACT

Bone sarcomas are a group of heterogeneous malignant mesenchymal tumors. Complete surgical resection is still the cornerstone of treatment, but, in the advanced/unresectable setting, their management remains challenging and not significantly improved by target- and immuno-therapies. We focused on the tyrosine kinase Eph type-A receptor-2 (EphA2), a key oncoprotein implicated in self-renewal, angiogenesis, and metastasis, in several solid tumors and thus representing a novel potential therapeutic target. Aiming at better characterizing its expression throughout the main bone sarcoma histotypes, we investigated EPHA2 expression in the Cancer Cell Lines Encyclopedia and in public datasets with clinical annotations. looking for correlations with molecular, histopathological and patients' features and clinical outcomes in a total of 232 osteosarcomas, 197 Ewing's sarcomas, and 102 chondrosarcomas. We observed EPHA2 expression in bone sarcoma cell lines. We demonstrated higher EPHA2 expression in tumor tissues when compared to normal counterparts. A significant correlation was found between EPHA2 expression and Huvos grade (osteosarcoma) and with worse overall survival (dedifferentiated chondrosarcoma). Next, we characterized EPHA2 expression and activation in bone sarcoma primary tissues and in patient-derived xenografts generated in our laboratory to verify their reliability as in vivo models of osteosarcoma, Ewing's sarcoma and chondrosarcoma. Furthermore, for the first time, we demonstrated EPHA2 expression in chondrosarcoma, suggesting its potential key role in this histotype. Indeed, we observed a significant dose-dependent antitumor effect of the EphA2-inhibitor ALW-II-41-27 in patient-derived in vitro models. In conclusion, EphA2 targeting represents a promising novel therapeutic strategy against bone sarcomas.


Subject(s)
Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Chondrosarcoma/pathology , Computational Biology , Osteosarcoma/pathology , Receptor, EphA2/metabolism , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology , Animals , Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Cell Line, Tumor , Chondrosarcoma/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Osteosarcoma/genetics , Receptor, EphA2/genetics , Sarcoma, Ewing/genetics , Treatment Outcome , Xenograft Model Antitumor Assays
19.
Crit Rev Oncol Hematol ; 165: 103436, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34371157

ABSTRACT

The personalized medicine is in a rapidly evolving scenario. The identification of actionable mutations is revolutionizing the therapeutic landscape of tumors. The morphological and histological tumor features are enriched by the extensive genomic profiling, and the first tumor-agnostic drugs have been approved regardless of tumor histology, guided by predictive and druggable genetic alterations. This new paradigm of "mutational oncology", presents a great potential to change the oncologic therapeutic scenario, but also some critical aspects need to be underlined. A process governance is mandatory to ensure the genomic testing accuracy and homogeneity, the economic sustainability, and the regulatory issues, ultimately granting the possibility of translating this model in the "real world". In this position paper, based on experts' opinion, the AIOM-SIAPEC-IAP-SIBIOC-SIF Italian Scientific Societies revised the new agnostic biomarkers, the diagnostic technologies available, the current availability of agnostic drugs and their present indication.


Subject(s)
Neoplasms , Societies, Scientific , Humans , Italy , Medical Oncology , Neoplasms/drug therapy , Neoplasms/genetics , Precision Medicine
20.
Cancers (Basel) ; 13(10)2021 May 11.
Article in English | MEDLINE | ID: mdl-34065007

ABSTRACT

Cancer adoptive cell therapy (ACT) with HLA-independent tumor killer lymphocytes is a promising approach, with intrinsic features potentially addressing crucial tumor-escape mechanisms of checkpoint inhibitors. Cytokine-induced Killer (CIK) and Natural Killer (NK) lymphocytes share similar tumor-killing mechanisms, with preclinical evidence of intense activity against multiple solid tumors and currently testing in clinical studies. To improve the effective clinical translation of such ACT approaches, several fundamental questions still need to be addressed within appropriate preclinical contexts, capable of overcoming limitations imposed by most traditional two-dimensional assays. Here, we developed a novel experimental approach to explore, dissect, and visualize the interactions of CIK and NK lymphocytes with melanoma tumors in vitro in 3D. Primary melanoma cells were assembled into small tumors that were dispersed in a 3D matrix and challenged with patient-derived CIK or the NK-92 cell line. By means of imaging-based methods, we reported, visualized, and quantitatively measured the recruitment of CIK and NK on the 3D targets, their infiltration, and cytotoxic activity. Our results support the effective tumor recruitment and tumor infiltration by CIK and NK. Such features appeared dependent on the specific geometric aspects of the environment but can be explained in terms of directional migration toward the tumor, without invoking major feedback components. Overall, our 3D platform allows us to monitor the processes of tumor recruitment, infiltration, and killing by means of live measurements, revealing important kinetic aspects of ACT with CIK and NK against melanoma.

SELECTION OF CITATIONS
SEARCH DETAIL
...