Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Pharmacol Exp Ther ; 336(1): 47-55, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20881018

ABSTRACT

Cytochrome P-450 epoxygenases metabolize arachidonic acid (AA) to epoxyeicosatrienoic acids (EETs). EETs relax vascular smooth muscle by membrane hyperpolarization. 14,15-Epoxyeicosa-5(Z)-enoic acid (14,15-EE5ZE) antagonizes many vascular actions of EETs. EETs are converted to the corresponding dihydroxyeicosatrienoic acids by soluble epoxide hydrolase (sEH). sEH activity in the bovine arterial endothelium and smooth muscle regulates endogenous EETs. This study examined sEH metabolism of 14,15-EE5ZE to 14,15-dihydroxy-eicosa-5(Z)-enoic acid (14,15-DHE5ZE) and the resultant consequences on EET relaxations of bovine coronary arteries (BCAs). BCAs converted 14,15-EE5ZE to 14,15-DHE5ZE. This conversion was blocked by the sEH inhibitor 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA). 14,15-EET relaxations (maximal relaxation, 83.4 ± 4.5%) were inhibited by 14,15-DHE5ZE (10 µM; maximal relaxation, 36.1 ± 9.0%; p < 0.001). In sharp contrast with 14,15-EE5ZE, 14,15-DHE5ZE is a 14,15-EET-selective inhibitor and did not inhibit 5,6-, 8,9-, or 11,12-EET relaxations. 14,15-EET and 11,12-EET relaxations were similar in the presence and absence of AUDA (1 µM). 14,15-EE5ZE inhibited 14,15-EET relaxations to a similar extent with and without AUDA pretreatment. However, 14,15-EE5ZE inhibited 11,12-EET relaxations to a greater extent with than without AUDA pretreatment. These observations indicate that sEH converts 14,15-EE5ZE to 14,15-DHE5ZE, and this alteration influences antagonist selectivity against EET-regioisomers. 14,15-DHE5ZE inhibited endothelium-dependent relaxations to AA but not endothelium-independent relaxations to sodium nitroprusside. A series of sEH-resistant ether analogs of 14,15-EE5ZE was developed, and analogs with agonist and antagonist properties were identified. The present study indicates that conversion of 14,15-EE5ZE to 14,15-DHE5ZE produces a 14,15-EET-selective antagonist that will be a useful pharmacological tool to identify EET receptor(s) and EET function in the cardiovascular system.


Subject(s)
8,11,14-Eicosatrienoic Acid/analogs & derivatives , Coronary Vessels/drug effects , Vasodilation/drug effects , 8,11,14-Eicosatrienoic Acid/antagonists & inhibitors , 8,11,14-Eicosatrienoic Acid/pharmacology , Animals , Cattle , Coronary Vessels/physiology , Dose-Response Relationship, Drug , Vasodilation/physiology
2.
Front Physiol ; 1: 157, 2010.
Article in English | MEDLINE | ID: mdl-21423396

ABSTRACT

Epoxyeicosatrienoic acids (EETs) contribute importantly to the regulation of vascular tone and blood pressure control. The purpose of this study was to develop stable EET analogs and test their in vivo blood pressure lowering effects in hypertensive rats. Using the pharmacophoric moiety of EETs, ether EET analogs were designed with improved solubility and resistance to auto-oxidation and metabolism by soluble epoxide hydrolase. Ether EET analogs were chosen based on their ability to dilate afferent arterioles and subsequently tested for blood pressure lowering effects in rodent models of hypertension. Initially, 11,12-ether-EET-8-ZE failed to lower blood pressure in angiotensin hypertension or spontaneously hypertensive rats (SHR). Esterification of the carboxylic group of 11,12-ether-EET-8-ZE prevented blood pressure increase in SHR when injected at 2 mg/day for 12 days (MAP Δ change at day 8 of injection was -0.3 ± 2 for treated and 12 ± 1 mmHg for control SHR). Amidation of the carboxylic group with aspartic acid produced another EET analog (NUDSA) with a blood pressure lowering effect when injected at 3 mg/day in SHR for 5 days. Amidation of the carboxylic group with lysine amino acid produced another analog with minimal blood pressure lowering effect. These data suggest that esterification of the carboxylic group of 11,12-ether-EET-8-ZE produced the most effective ether-EET analog in lowering blood pressure in SHR and provide the first evidence to support the use of EET analogs in treatment of cardiovascular diseases.

3.
Front Biosci ; 13: 3480-7, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18508449

ABSTRACT

In stroke-prone spontaneously hypertensive rats (SHRSP) end-organ damage is markedly accelerated by high-salt (HS) intake. Since epoxyeicosatrienoic acids (EETs) possess vasodepressor and natriuretic activities, we examined whether a soluble epoxide hydrolase (sEH) inhibitor, 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA), to inhibit the metabolism of EETs, would protect against pathologic changes in SHRSP. Seven-week-old male SHRSP were treated as follows: normal salt (NS), NS + AUDA, HS and HS + AUDA. Systolic blood pressure (SBP) (205 +/- 4 v 187 +/- 7 mmHg) and proteinuria (3.7 +/- 0.2 v 2.6 +/- 0.2 mg/6 h), but not plasma EETs (11.0 +/- 0.9 v 9.7 +/- 1.1 ng/ml), were significantly increased at 9 weeks of age in HS v NS SHRSP. HS was associated with fibrinoid degeneration and hypertrophy of arterioles in the kidney and perivascular fibrosis and contraction band necrosis in the heart. AUDA ameliorated these early salt-dependent changes in saline-drinking SHRSP and increased plasma levels of EETs but did not affect water and electrolyte excretion. sEH inhibition may provide a therapeutic strategy for treating salt-sensitive hypertension and its sequelae.


Subject(s)
Adamantane/analogs & derivatives , Enzyme Inhibitors/therapeutic use , Epoxide Hydrolases/antagonists & inhibitors , Hypertension/prevention & control , Lauric Acids/therapeutic use , Adamantane/therapeutic use , Animals , Eicosanoic Acids/metabolism , Epithelial Sodium Channels/physiology , Male , Rats , Rats, Inbred SHR , Sodium Chloride/adverse effects , Stroke/epidemiology
4.
J Pharmacol Exp Ther ; 321(3): 1023-31, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17327488

ABSTRACT

Epoxyeicosatrienoic acids (EETs) are cytochrome P450 epoxygenase metabolites of arachidonic acid. EETs mediate numerous biological functions. In coronary arteries, they regulate vascular tone by the activation of smooth muscle large-conductance, calcium-activated potassium (BK(Ca)) channels to cause hyperpolarization and relaxation. We developed a series of 14,15-EET agonists, 14,15-EET-phenyliodosulfonamide (14,15-EET-PISA), 14,15-EET-biotinsulfonamide (14,15-EET-BSA), and 14,15-EET-benzoyldihydrocinnamide-sulfonamide (14,15-EET-BZDC-SA) as tools to characterize 14,15-EET metabolism and binding. Agonist activities of these analogs were characterized in precontraced bovine coronary arterial rings. All three analogs induced concentration-dependent relaxation and were equipotent with 14,15-EET. Relaxations to these analogs were inhibited by the BK(Ca) channel blocker iberiotoxin (100 nM), the 14,15-EET antagonist 14,15-epoxyeicosa-5(Z)-enoylmethylsulfonamide (10 muM), and abolished by 20 mM extracellular K(+). 14,15-EET-PISA is metabolized to 14,15-dihydroxyeicosatrienoyl-PISA by soluble epoxide hydrolase in bovine coronary arteries and U937 cells but not U937 cell membrane fractions. 14,15-EET-P(125)ISA binding to human U937 cell membranes was time-dependent, concentration-dependent, and saturable. The specific binding reached equilibrium by 15 min at 4 degrees C and remained unchanged up to 30 min. The estimated K(d) and B(max) were 148.3 +/- 36.4 nM and 3.3 +/- 0.5 pmol/mg protein, respectively. These data suggest that 14,15-EET-PISA, 14,15-EET-BSA, and 14,15-EET-BZDC-SA are full 14,15-EET agonists. 14,15-EET-P(125)ISA is a new radiolabeled tool to study EET metabolism and binding. Our results also provide preliminary evidence that EETs exert their biological effect through a membrane binding site/receptor.


Subject(s)
8,11,14-Eicosatrienoic Acid/analogs & derivatives , Coronary Vessels/drug effects , Sulfonamides/pharmacology , Vasodilator Agents/pharmacology , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , 8,11,14-Eicosatrienoic Acid/metabolism , 8,11,14-Eicosatrienoic Acid/pharmacology , Animals , Binding, Competitive , Cattle , Cell Membrane/metabolism , Coronary Vessels/metabolism , Coronary Vessels/physiology , Humans , In Vitro Techniques , Large-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Ligands , Molecular Structure , Peptides/pharmacology , Subcellular Fractions , Sulfonamides/chemistry , Sulfonamides/metabolism , U937 Cells , Vasodilation/drug effects , Vasodilator Agents/chemical synthesis , Vasodilator Agents/metabolism
5.
Mol Cell Proteomics ; 6(5): 812-9, 2007 May.
Article in English | MEDLINE | ID: mdl-17267393

ABSTRACT

The positively charged lysine residue plays an important role in protein folding and functions. Neutralization of the charge often has a profound impact on the substrate proteins. Accordingly all the known post-translational modifications at lysine have pivotal roles in cell physiology and pathology. Here we report the discovery of two novel, in vivo lysine modifications in histones, lysine propionylation and butyrylation. We confirmed, by in vitro labeling and peptide mapping by mass spectrometry, that two previously known acetyltransferases, p300 and CREB-binding protein, could catalyze lysine propionylation and lysine butyrylation in histones. Finally p300 and CREB-binding protein could carry out autopropionylation and autobutyrylation in vitro. Taken together, our results conclusively establish that lysine propionylation and lysine butyrylation are novel post-translational modifications. Given the unique roles of propionyl-CoA and butyryl-CoA in energy metabolism and the significant structural changes induced by the modifications, the two modifications are likely to have important but distinct functions in the regulation of biological processes.


Subject(s)
Acyl Coenzyme A/metabolism , Histones/metabolism , Lysine/metabolism , Protein Processing, Post-Translational , Amino Acid Sequence , Chromatography, High Pressure Liquid , Histones/chemistry , Humans , Lysine/chemistry , Molecular Sequence Data , Peptides/metabolism , Proteomics , Tandem Mass Spectrometry , Tumor Suppressor Protein p53/metabolism , p300-CBP Transcription Factors/metabolism
6.
Bioorg Med Chem ; 15(2): 1062-6, 2007 Jan 15.
Article in English | MEDLINE | ID: mdl-17070060

ABSTRACT

The title l-glutathione derivatives, containing acid- and base-labile esters, respectively, were obtained in good overall yields. N-(t)Boc l-glutathione dimethyl ester was prepared via Fischer esterification of l-glutathione disulfide (GSSG) using HCl in dry methanol, protection of the amine with (t)Boc(2)O, and tributylphosphine cleavage of the disulfide in wet isopropanol. Alternatively, Fischer esterification and (t)Boc-protection of l-glutathione (GSH) also furnished N-(t)Boc glutathione dimethyl ester accompanied by a small amount of S-(t)Boc that was removed chromatographically. The di-tert-butyl ester was obtained by S-palmitoylation of GSH in TFA as solvent, N-(t)Boc-protection, esterification using (t)BuOH mediated by diisopropylcarbodiimide/copper(I) chloride, and saponification of the thioester. These l-glutathione derivatives are versatile synthetic building blocks for the preparation of S-glutathione adducts.


Subject(s)
Glutathione/analogs & derivatives , Glutathione/chemical synthesis , Chromatography, Thin Layer , Esters/chemical synthesis , Indicators and Reagents , Magnetic Resonance Spectroscopy , Mass Spectrometry , Palmitic Acid/chemistry , Solvents
7.
Free Radic Biol Med ; 40(12): 2198-205, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16785033

ABSTRACT

Hyperglycemia has been linked to increased oxidative stress, a resultant endothelial cell dysfunction, and, ultimately, apoptosis. Heme oxygenases (HO-1/HO-2) and the products of their activity, biliverdin/bilirubin and carbon monoxide (CO), play a physiological role in the vascular system. The effects of heme-mediated HO-1 induction, CO, and biliverdin on urinary 8-epi-isoprostane PGF(2alpha) and endothelial cell sloughing were examined in an animal model of streptozotocin (STZ)-induced diabetes. Hyperglycemia itself did not affect HO-1 and HO-2 protein levels, but caused a net decrease in HO activity. Weekly heme administration induced HO-1 protein, as demonstrated by immunohistochemistry and Western blot analyses. Administration of biliverdin or the CO donor, CORM-3, decreased urinary 8-epi-isoprostane PGF(2alpha), P < 0.5 compared to diabetes. Hyperglycemia increased endothelial cell sloughing; 8.2 +/- 0.8 cells/ml blood in control rats vs. 48 +/- 4.8 cells/ml blood in diabetic rats (P < 0.05). Heme administration significantly increased endothelial cell sloughing in diabetic rats (98 +/- 8.1 cells/ml blood, P < 0.0007) whereas biliverdin modestly decreased endothelial cell sloughing (26 +/- 3.5 cells/ml blood, P < 0.003). Administration of CORM-3 to diabetic rats resulted in a significant decrease in endothelial cell sloughing to 21.3 +/- 2.3 (P < 0.001). Administration of SnMP to CORM-3 diabetic rats only partially reversed the protective effects of CORM-3 on endothelial cell sloughing from 21.3 +/- 2.3 to 29 +/- 2.1 cells/ml, thus confirming a direct protective of CO, in addition to the ability of CORM-3 to induce HO-1 protein. These results demonstrate that exogenously administered CO or bilirubin can prevent endothelial cell sloughing in diabetic rats, likely via a decrease in oxidative stress, and thus represents a novel approach to prophylactic vascular protection in diabetes.


Subject(s)
Biliverdine/pharmacology , Carbon Monoxide/pharmacology , Diabetes Mellitus, Type 1/pathology , Diabetic Angiopathies/prevention & control , Endothelium, Vascular/drug effects , Protective Agents/pharmacology , Animals , Cell Aggregation/drug effects , Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 1/enzymology , Diabetic Angiopathies/enzymology , Diabetic Angiopathies/pathology , Dinoprost/analogs & derivatives , Dinoprost/urine , Endothelial Cells/drug effects , Endothelial Cells/pathology , Endothelium, Vascular/enzymology , Endothelium, Vascular/pathology , Heme/pharmacology , Heme Oxygenase (Decyclizing)/analysis , Heme Oxygenase-1/analysis , Organometallic Compounds/pharmacology , Rats
8.
Am J Physiol Heart Circ Physiol ; 290(1): H55-63, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16113065

ABSTRACT

Epoxyeicosatrienoic acids (EETs), lipid mediators synthesized from arachidonic acid by cytochrome P-450 epoxygenases, are converted by soluble epoxide hydrolase (SEH) to the corresponding dihydroxyeicosatrienoic acids (DHETs). Originally considered as inactive degradation products of EETs, DHETs have biological activity in some systems. Here we examined the capacity of EETs and DHETs to activate peroxisome proliferator-activated receptor-alpha (PPARalpha). We find that among the EET and DHET regioisomers, 14,15-DHET is the most potent PPARalpha activator in a COS-7 cell expression system. Incubation with 10 microM 14,15-DHET produced a 12-fold increase in PPARalpha-mediated luciferase activity, an increase similar to that produced by the PPARalpha agonist Wy-14643 (20 microM). Although 10 microM 14,15-EET produced a threefold increase in luciferase activity, this was abrogated by the SEH inhibitor dicyclohexylurea. 14-Hexyloxytetradec-5(Z)-enoic acid, a 14,15-EET analog that cannot be converted to a DHET, did not activate PPARalpha. However, PPARalpha was activated by 2-(14,15-epoxyeicosatrienoyl)glycerol, which was hydrolyzed and the released 14,15-EET converted to 14,15-DHET. COS-7 cells incorporated 14,15-[3H]DHET from the medium, and the cells also retained a small amount of the DHET formed during incubation with 14,15-[3H]EET. Binding studies indicated that 14,15-[3H]DHET binds to the ligand binding domain of PPARalpha with a Kd of 1.4 microM. Furthermore, 14,15-DHET increased the expression of carnitine palmitoyltransferase 1A, a PPARalpha-responsive gene, in transfected HepG2 cells. These findings suggest that 14,15-DHET, produced from 14,15-EET by the action of SEH, may function as an endogenous activator of PPARalpha.


Subject(s)
8,11,14-Eicosatrienoic Acid/analogs & derivatives , PPAR alpha/metabolism , 8,11,14-Eicosatrienoic Acid/metabolism , 8,11,14-Eicosatrienoic Acid/pharmacology , Animals , Arachidonic Acids/pharmacology , COS Cells , Carnitine O-Palmitoyltransferase/biosynthesis , Carnitine O-Palmitoyltransferase/genetics , Cell Line, Tumor , Chlorocebus aethiops , Epoxide Hydrolases/metabolism , Epoxy Compounds/pharmacology , Humans , Urea/analogs & derivatives , Urea/pharmacology
9.
Antioxid Redox Signal ; 7(5-6): 704-10, 2005.
Article in English | MEDLINE | ID: mdl-15890016

ABSTRACT

Heme oxygenase isoforms (HO-1/HO-2) catalyze the conversion of heme to carbon monoxide (CO) and bilirubin. In this study, HO-1-deficient endothelial cells were transduced with HO-1 in the antisense orientation to determine whether supplementation with CO or bilirubin would regulate cell proliferation and angiogenesis. Western blotting, enzyme activity, CO and prostaglandin E(2) (PGE(2)) production, and cell-cycle analysis were used to assess transgenic expression and functionality of the recombinant protein. A Matrigel matrix was used for assessment of in vitro capillary formation. Transduction with HO-1 antisense resulted in decreased capillary formation, cell proliferation, and cell-cycle progression, and increased PGE(2) production compared with control. HO-1 deficiency was also associated with increased expression of p21 and p27, but had no significant effect on p16 and p53. We also compared two different CO donors for their ability to rescue angiogenesis. Compared with control, HO-1-deficient endothelial cells showed increased angiogenesis following tricarbonyldichlororuthenium( II) dimer ([Ru(CO)(3)Cl(2)](2)) (CORM-1) starting at 50 microM, whereas tricarbonylchloro(glycinato) ruthenium(II) (CORM-3), starting at 25 microM, was a potent enhancer of angiogenesis. The addition of bilirubin did not restore angiogenesis. These data suggest that HO-mediated angiogenesis and cell proliferation were dependent on HO-1- and not HO-2-derived CO.


Subject(s)
Carbon Monoxide/metabolism , Endothelial Cells/metabolism , Microcirculation , Neovascularization, Physiologic , Signal Transduction , Cell Proliferation , DNA/metabolism , Endothelial Cells/cytology , Endothelial Cells/drug effects , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase-1 , Humans , Membrane Proteins , Neovascularization, Physiologic/drug effects , Vascular Endothelial Growth Factor A/pharmacology
10.
Hypertension ; 45(4): 681-6, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15699458

ABSTRACT

5,6-epoxyeicosatrienoic acid (5,6-EET) is a cytochrome P450 epoxygenase metabolite of arachidonic acid that causes vasorelaxation. However, investigations of its role in biological systems have been limited by its chemical instability. We developed a stable agonist of 5,6-EET, 5-(pentadeca-3(Z),6(Z),9(Z)-trienyloxy)pentanoic acid (PTPA), in which the 5,6-epoxide was replaced with a 5-ether. PTPA obviates chemical and enzymatic hydrolysis. In bovine coronary artery rings precontracted with U46619, PTPA (1 nmol/L to 10 micromol/L) induced concentration-dependent relaxations, with maximal relaxation of 86+/-5% and EC50 of 1 micromol/L. The relaxations were inhibited by the cyclooxygenase inhibitor indomethacin (10 micromol/L; max relaxation 43+/-9%); the ATP-sensitive K+ channel inhibitor glybenclamide (10 micromol/L; max relaxation 49+/-6%); and the large conductance calcium-activated K+ channel inhibitor iberiotoxin (100 nmol/L; max relaxation 38+/-6%) and abolished by the combination of iberiotoxin with indomethacin or glybenclamide or increasing extracellular K+ to 20 mmol/L. Whole-cell outward K+ current was increased nearly 6-fold by PTPA (10 micromol/L), which was also blocked by iberiotoxin. Additionally, we synthesized 5-(pentadeca-6(Z),9(Z)-dienyloxy)pentanoic acid and 5-(pentadeca-3(Z),9(Z)-dienyloxy)pentanoic acid (PDPA), PTPA analogs that lack the 8,9 or 11,12 double bonds of arachidonic acid and therefore are not substrates for cyclooxygenase. The PDPAs caused concentration-dependent relaxations (max relaxations 46+/-13% and 52+/-7%, respectively; EC50 1micromol/L), which were not altered by glybenclamide but blocked by iberiotoxin. These studies suggested that PTPA induces relaxation through 2 mechanisms: (1) cyclooxygenase-dependent metabolism to 5-ether-containing prostaglandins that activate ATP-sensitive K+ channels and (2) activation of smooth muscle large conductance calcium-activated K+ channels. PDPAs only activate large conductance calcium-activated K+ channels.


Subject(s)
8,11,14-Eicosatrienoic Acid/analogs & derivatives , Coronary Vessels/drug effects , Coronary Vessels/physiology , Pentanoic Acids/pharmacology , Potassium Channels/physiology , Vasodilation/physiology , 8,11,14-Eicosatrienoic Acid/agonists , Adenosine Triphosphate/metabolism , Animals , Cattle , Drug Stability , Electric Conductivity , Glyburide/pharmacology , In Vitro Techniques , Indomethacin/pharmacology , Patch-Clamp Techniques , Pentanoic Acids/chemistry , Peptides/pharmacology , Potassium Channel Blockers/pharmacology , Potassium Channels/drug effects , Potassium Channels, Calcium-Activated/drug effects , Potassium Channels, Calcium-Activated/physiology , Prostaglandin-Endoperoxide Synthases/metabolism , Vasodilation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL