Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Dis ; 47(3): e13905, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38073005

ABSTRACT

The presence of endogenous viral elements (EVE) in the penaeid shrimp genome has been recently reported and suggested to be involved in the host recognition of viral invaders. Our previous report of a search for EVE of infectious hypodermal and haematopoietic necrosis virus (IHHNV-EVE) in the Thai Penaeus monodon whole genome sequence project (GenBank accession no. JABERT000000000) confirmed the presence of three clusters of EVE derived from IHHNV in the shrimp genome. This study aimed to compare an immunohistochemistry method (IHC) and a PCR method to detect infectious IHHNV infection in shrimp. First, specimens collected from farms were checked for IHHNV using three PCR methods; two methods were recommended by WOAH (309 and 389 methods), and a newly established long-range PCR for IHHNV (IHHNV-LA PCR) targeting almost the whole genome (>90%) of IHHNV. Among 29 specimens tested, 24 specimens were positive for WOAH methods (at least one method). Among 24 WOAH-positive specimens (WOAH+), there were 18 specimens with positive IHHNV-LA PCR method (WOAH+/LA+), six specimens with negative IHHNV-LA PCR method (WOAH+/LA-). Six specimens were negative for all methods (WOAH-/LA-). The positive signals detected by IHC method were found only in the specimens with WOAH+/LA+. The results suggest that the WOAH+/LA- specimens were not infected with IHHNV, and the positive WOAH method might result from the EVE-IHHNV. The study recommends combining the IHHNV-LA PCR method and IHC with positive PCR results from WOAH's recommended methods to confirm IHHNV infection.


Subject(s)
Densovirinae , Fish Diseases , Penaeidae , Animals , Polymerase Chain Reaction/veterinary , Immunohistochemistry , Fish Diseases/diagnosis
2.
PLoS One ; 11(11): e0166320, 2016.
Article in English | MEDLINE | ID: mdl-27832178

ABSTRACT

Hepatopancreatic microsporidiosis (HPM) caused by Enterocytozoon hepatopenaei (EHP) is an important disease of cultivated shrimp. Heavy infections may lead to retarded growth and unprofitable harvests. Existing PCR detection methods target the EHP small subunit ribosomal RNA (SSU rRNA) gene (SSU-PCR). However, we discovered that they can give false positive test results due to cross reactivity of the SSU-PCR primers with DNA from closely related microsporidia that infect other aquatic organisms. This is problematic for investigating and monitoring EHP infection pathways. To overcome this problem, a sensitive and specific nested PCR method was developed for detection of the spore wall protein (SWP) gene of EHP (SWP-PCR). The new SWP-PCR method did not produce false positive results from closely related microsporidia. The first PCR step of the SWP-PCR method was 100 times (104 plasmid copies per reaction vial) more sensitive than that of the existing SSU-PCR method (106 copies) but sensitivity was equal for both in the nested step (10 copies). Since the hepatopancreas of cultivated shrimp is not currently known to be infected with microsporidia other than EHP, the SSU-PCR methods are still valid for analyzing hepatopancreatic samples despite the lower sensitivity than the SWP-PCR method. However, due to its greater specificity and sensitivity, we recommend that the SWP-PCR method be used to screen for EHP in feces, feed and environmental samples for potential EHP carriers.


Subject(s)
DNA, Fungal/analysis , Enterocytozoon/isolation & purification , Microsporidiosis/microbiology , Microsporidiosis/veterinary , Penaeidae/microbiology , Shellfish/microbiology , Animals , Base Sequence , DNA, Fungal/genetics , Enterocytozoon/genetics , Fisheries , In Situ Hybridization , Polymerase Chain Reaction/methods , Sequence Alignment
3.
PLoS One ; 11(3): e0151769, 2016.
Article in English | MEDLINE | ID: mdl-27003504

ABSTRACT

Acute hepatopancreatic necrosis disease (AHPND) is a component cause of early mortality syndrome (EMS) of shrimp. In 2013, the causative agent was found to be unique isolates of Vibrio parahaemolyticus (VPAHPND) that contained a 69 kbp plasmid (pAP1) carrying binary Pir-like toxin genes PirvpA and PirvpB. In Thailand, AHPND was first recognized in 2012, prior to knowledge of the causative agent, and it subsequently led to a precipitous drop in shrimp production. After VPAHPND was characterized, a major focus of the AHPND control strategy was to monitor broodstock shrimp and post larvae for freedom from VPAHPND by nucleic acid amplification methods, most of which required use of expensive and sophisticated equipment not readily available in a shrimp farm setting. Here, we describe a simpler but equally sensitive approach for detection of VPAHPND based on loop-mediated isothermal amplification (LAMP) combined with unaided visual reading of positive amplification products using a DNA-functionalized, ssDNA-labled nanogold probe (AuNP). The target for the special set of six LAMP primers used was the VPAHPND PirvpA gene. The LAMP reaction was carried out at 65°C for 45 min followed by addition of the red AuNP solution and further incubation at 65°C for 5 min, allowing any PirvpA gene amplicons present to hybridize with the probe. Hybridization protected the AuNP against aggregation, so that the solution color remained red upon subsequent salt addition (positive test result) while unprotected AuNP aggregated and underwent a color change from red to blue and eventually precipitated (negative result). The total assay time was approximately 50 min. The detection limit (100 CFU) was comparable to that of other commonly-used methods for nested PCR detection of VPAHPND and 100-times more sensitive than 1-step PCR detection methods (104 CFU) that used amplicon detection by electrophoresis or spectrophotometry. There was no cross reaction with DNA templates derived from non-AHPND bacteria commonly found in shrimp ponds (including other Vibrio species). The new method significantly reduced the time, difficulty and cost for molecular detection of VPAHPND in shrimp hatchery and farm settings.


Subject(s)
Metal Nanoparticles/chemistry , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Hybridization/methods , Penaeidae/microbiology , Vibrio parahaemolyticus/genetics , Animals , Bacillus subtilis/genetics , DNA Primers/genetics , Gold/chemistry , Limit of Detection , Pancreatitis-Associated Proteins , Polymerase Chain Reaction/methods , Vibrio parahaemolyticus/isolation & purification
4.
PLoS One ; 10(5): e0126987, 2015.
Article in English | MEDLINE | ID: mdl-26017673

ABSTRACT

Unique isolates of Vibrio parahaemolyticus (VPAHPND) have previously been identified as the causative agent of acute hepatopancreatic necrosis disease (AHPND) in shrimp. AHPND is characterized by massive sloughing of tubule epithelial cells of the hepatopancreas (HP), proposed to be induced by soluble toxins released from VPAHPND that colonize the shrimp stomach. Since these toxins (produced in broth culture) have been reported to cause AHPND pathology in reverse gavage bioassays with shrimp, we used ammonium sulfate precipitation to prepare protein fractions from broth cultures of VPAHPND isolates for screening by reverse gavage assays. The dialyzed 60% ammonium sulfate fraction caused high mortality within 24-48 hours post-administration, and histological analysis of the moribund shrimp showed typical massive sloughing of hepatopancreatic tubule epithelial cells characteristic of AHPND. Analysis of the active fraction by SDS-PAGE revealed two major bands at marker levels of approximately 16 kDa (ToxA) and 50 kDa (ToxB). Mass spectrometry analysis followed by MASCOT analysis revealed that both proteins had similarity to hypothetical proteins of V. parahaemolyticus M0605 (contig034 GenBank accession no. JALL01000066.1) and similarity to known binary insecticidal toxins called 'Photorhabdus insect related' proteins A and B (Pir-A and Pir-B), respectively, produced by the symbiotic, nematode bacterium Photorhabdus luminescens. In in vivo tests, it was shown that recombinant ToxA and ToxB were both required in a dose dependent manner to cause AHPND pathology, indicating further similarity to Pir-A and -B. A single-step PCR method was designed for detection of the ToxA gene and was validated using 104 bacterial isolates consisting of 51 VPAHPND isolates, 34 non-AHPND VP isolates and 19 other isolates of bacteria commonly found in shrimp ponds (including other species of Vibrio and Photobacterium). The results showed 100% specificity and sensitivity for detection of VPAHPND isolates in the test set.


Subject(s)
Bacterial Toxins/genetics , Penaeidae/microbiology , Polymerase Chain Reaction/methods , Vibrio Infections/veterinary , Vibrio parahaemolyticus/genetics , Vibrio parahaemolyticus/pathogenicity , Animal Diseases , Animals , Bacterial Toxins/metabolism , Bacterial Toxins/toxicity , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Hepatopancreas/microbiology , Hepatopancreas/pathology , Vibrio Infections/microbiology , Vibrio parahaemolyticus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...