Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
BMC Genomics ; 25(1): 497, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773372

ABSTRACT

BACKGROUND: Alfalfa (Medicago sativa L.) is the most cultivated forage legume around the world. Under a variety of growing conditions, forage yield in alfalfa is stymied by biotic and abiotic stresses including heat, salt, drought, and disease. Given the sessile nature of plants, they use strategies including, but not limited to, differential gene expression to respond to environmental cues. Transcription factors control the expression of genes that contribute to or enable tolerance and survival during periods of stress. Basic-leucine zipper (bZIP) transcription factors have been demonstrated to play a critical role in regulating plant growth and development as well as mediate the responses to abiotic stress in several species, including Arabidopsis thaliana, Oryza sativa, Lotus japonicus and Medicago truncatula. However, there is little information about bZIP transcription factors in cultivated alfalfa. RESULT: In the present study, 237 bZIP genes were identified in alfalfa from publicly available sequencing data. Multiple sequence alignments showed the presence of intact bZIP motifs in the identified sequences. Based on previous phylogenetic analyses in A. thaliana, alfalfa bZIPs were similarly divided and fell into 10 groups. The physico-chemical properties, motif analysis and phylogenetic study of the alfalfa bZIPs revealed high specificity within groups. The differential expression of alfalfa bZIPs in a suite of tissues indicates that bZIP genes are specifically expressed at different developmental stages in alfalfa. Similarly, expression analysis in response to ABA, cold, drought and salt stresses, indicates that a subset of bZIP genes are also differentially expressed and likely play a role in abiotic stress signaling and/or tolerance. RT-qPCR analysis on selected genes further verified these differential expression patterns. CONCLUSIONS: Taken together, this work provides a framework for the future study of bZIPs in alfalfa and presents candidate bZIPs involved in stress-response signaling.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Gene Expression Regulation, Plant , Medicago sativa , Phylogeny , Stress, Physiological , Medicago sativa/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Computer Simulation , Gene Expression Profiling , Computational Biology/methods
2.
Front Plant Sci ; 15: 1343097, 2024.
Article in English | MEDLINE | ID: mdl-38463570

ABSTRACT

Lignin is a phenolic heteropolymer found in most terrestrial plants that contributes an essential role in plant growth, abiotic stress tolerance, and biotic stress resistance. Recent research in grass lignin biosynthesis has found differences compared to dicots such as Arabidopsis thaliana. For example, the prolific incorporation of hydroxycinnamic acids into grass secondary cell walls improve the structural integrity of vascular and structural elements via covalent crosslinking. Conversely, fundamental monolignol chemistry conserves the mechanisms of monolignol translocation and polymerization across the plant phylum. Emerging evidence suggests grass lignin compositions contribute to abiotic stress tolerance, and periods of biotic stress often alter cereal lignin compositions to hinder pathogenesis. This same recalcitrance also inhibits industrial valorization of plant biomass, making lignin alterations and reductions a prolific field of research. This review presents an update of grass lignin biosynthesis, translocation, and polymerization, highlights how lignified grass cell walls contribute to plant development and stress responses, and briefly addresses genetic engineering strategies that may benefit industrial applications.

3.
Sci Total Environ ; 912: 168883, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38040367

ABSTRACT

Land-applied biosolids can be a considerable source of microplastics in soils. Previous studies reported microplastics accumulation in soils from biosolid application, however, little is known about the contribution of atmospherically deposited microplastics to agricultural soils. In this study, we quantified and characterized microplastics in soils that have been amended with biosolids over the past 23 years. We also collected atmospheric deposition samples to determine the amount and type of plastics added to soils through atmospheric input over a period of about 2 years. Soil samples were taken from a replicated field trial where biosolids have been applied at rates of 0, 4.8, 6.9, and 9.0 t/ha every second crop. The biosolids were anaerobically digested and dewatered, and were applied by spreading onto the soil surface. Soil and atmospheric samples were extracted for microplastics by Fenton's reaction to remove organic matter followed by flotation in a zinc chloride solution to separate plastic from soil particles. Samples were analyzed for microplastics by optical microscopy and Laser Direct Infrared Imaging Analysis (LDIR). The mean number of microplastics identified from biosolids samples was 12,000 particles/kg dry biosolids. The long-term applications of biosolids to the soil led to mean plastics concentrations of 383, 500, and 361 particles/kg dry soil in the 0-10 cm depth for low, medium, and high biosolids application rates, respectively. These plastic concentrations were not significantly different from each other, but significantly higher than those found in non biosolids-amended soil (117 particles/kg dry soil). The dominant plastic types by number found in biosolids were polyurethane, followed by polyethylene, and polyamide. The most abundant plastics in soil samples were polyurethane, polyethylene terephthalate, polyamide, and polyethylene. Atmospheric deposition contributed to 15 particles/kg dry soil per year and was mainly composed of polyamide fibers. This study shows that long-term application of biosolids led to an accumulation of microplastics in soil, but that atmospheric deposition also contributes a considerable input of microplastics.


Subject(s)
Soil Pollutants , Soil , Microplastics , Plastics , Biosolids , Polyurethanes , Nylons , Soil Pollutants/analysis , Polyethylenes , Sewage
4.
New Phytol ; 239(5): 1723-1739, 2023 09.
Article in English | MEDLINE | ID: mdl-37421201

ABSTRACT

Here, we discover a player in root development. Recovered from a forward-genetic screen in Brachypodium distachyon, the buzz mutant initiates root hairs but they fail to elongate. In addition, buzz roots grow twice as fast as wild-type roots. Also, lateral roots show increased sensitivity to nitrate, whereas primary roots are less sensitive to nitrate. Using whole-genome resequencing, we identified the causal single nucleotide polymorphism as occurring in a conserved but previously uncharacterized cyclin-dependent kinase (CDK)-like gene. The buzz mutant phenotypes are rescued by the wild-type B. distachyon BUZZ coding sequence and by an apparent homolog in Arabidopsis thaliana. Moreover, T-DNA mutants in A. thaliana BUZZ have shorter root hairs. BUZZ mRNA localizes to epidermal cells and develops root hairs and, in the latter, partially colocalizes with the NRT1.1A nitrate transporter. Based on qPCR and RNA-Seq, buzz overexpresses ROOT HAIRLESS LIKE SIX-1 and -2 and misregulates genes related to hormone signaling, RNA processing, cytoskeletal, and cell wall organization, and to the assimilation of nitrate. Overall, these data demonstrate that BUZZ is required for tip growth after root hair initiation and root architectural responses to nitrate.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Brachypodium , Arabidopsis Proteins/metabolism , Nitrates/metabolism , Genes, Essential , Plant Roots/metabolism , Gene Expression Regulation, Plant
6.
Curr Biol ; 33(9): R359-R361, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37160093

ABSTRACT

Root growth inhibition under phosphorous deficiency was long hypothesized to be the result of toxic iron levels in root tips. However, a new study reveals ARSK1 and TOR1 regulate root growth within hours of phosphorous starvation prior to changes in iron accumulation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Mechanistic Target of Rapamycin Complex 1 , Phosphorus , Plant Roots , Arabidopsis/growth & development , Plant Roots/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Phosphorus/deficiency , Iron/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mutation
7.
Cells ; 11(11)2022 05 27.
Article in English | MEDLINE | ID: mdl-35681460

ABSTRACT

Drought resiliency strategies combine developmental, physiological, cellular, and molecular mechanisms. Here, we compare drought responses in two resilient spring wheat (Triticum aestivum) genotypes: a well-studied drought-resilient Drysdale and a resilient genotype from the US Pacific North-West Hollis. While both genotypes utilize higher water use efficiency through the reduction of stomatal conductance, other mechanisms differ. First, Hollis deploys the drought escape mechanism to a greater extent than Drysdale by accelerating the flowering time and reducing root growth. Second, Drysdale uses physiological mechanisms such as non-photochemical quenching (NPQ) to dissipate the excess of harvested light energy and sustain higher Fv/Fm and ϕPSII, whereas Hollis maintains constant NPQ but lower Fv/Fm and ϕPSII values. Furthermore, more electron donors of the electron transport chain are in the oxidized state in Hollis than in Drysdale. Third, many ROS homeostasis parameters, including peroxisome abundance, transcription of peroxisome biogenesis genes PEX11 and CAT, catalase protein level, and enzymatic activity, are higher in Hollis than in Drysdale. Fourth, transcription of autophagy flux marker ATG8.4 is upregulated to a greater degree in Hollis than in Drysdale under drought, whereas relative ATG8 protein abundance under drought stress is lower in Hollis than in Drysdale. These data demonstrate the activation of autophagy in both genotypes and a greater autophagic flux in Hollis. In conclusion, wheat varieties utilize different drought tolerance mechanisms. Combining these mechanisms within one genotype offers a promising strategy to advance crop resiliency.


Subject(s)
Droughts , Triticum , Autophagy/genetics , Genotype , Triticum/metabolism , Water/metabolism
8.
Nat Commun ; 13(1): 2213, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35468894

ABSTRACT

Plant pathogens degrade cell wall through secreted polygalacturonases (PGs) during infection. Plants counteract the PGs by producing PG-inhibiting proteins (PGIPs) for protection, reversibly binding fungal PGs, and mitigating their hydrolytic activities. To date, how fungal pathogens specifically overcome PGIP inhibition is unknown. Here, we report an effector, Sclerotinia sclerotiorum PGIP-INactivating Effector 1 (SsPINE1), which directly interacts with and functionally inactivates PGIP. S. sclerotiorum is a necrotrophic fungus that causes stem rot diseases on more than 600 plant species with tissue maceration being the most prominent symptom. SsPINE1 enhances S. sclerotiorum necrotrophic virulence by specifically interacting with host PGIPs to negate their polygalacturonase-inhibiting function via enhanced dissociation of PGIPs from PGs. Targeted deletion of SsPINE1 reduces the fungal virulence. Ectopic expression of SsPINE1 in plant reduces its resistance against S. sclerotiorum. Functional and genomic analyses reveal a conserved virulence mechanism of cognate PINE1 proteins in broad host range necrotrophic fungal pathogens.


Subject(s)
Ascomycota , Polygalacturonase , Ascomycota/genetics , Ascomycota/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants/metabolism , Polygalacturonase/genetics , Polygalacturonase/metabolism
9.
Biomolecules ; 11(8)2021 07 23.
Article in English | MEDLINE | ID: mdl-34439752

ABSTRACT

Global agricultural intensification has prompted investigations into biostimulants to enhance plant nutrition and soil ecosystem processes. Metal lactates are an understudied class of organic micronutrient supplement that provide both a labile carbon source and mineral nutrition for plant and microbial growth. To gain a fundamental understanding of plant responses to metal lactates, we employed a series of sterile culture-vessel experiments to compare the uptake and toxicity of five metals (Zn, Mn, Cu, Ni, and Co) supplied in lactate and chloride salt form. Additionally, primary root growth in plate-grown Arabidopsis thaliana seedlings was used to determine optimal concentrations of each metal lactate. Our results suggest that uptake and utilization of metals in wheat (Triticum aestivum L.) when supplied in lactate form is comparable to that of metal chlorides. Metal lactates also have promotional growth effects on A. thaliana seedlings with optimal concentrations identified for Zn (0.5-1.0 µM), Mn (0.5-1.0 µM), Cu (0.5 µM), Ni (1.0 µM), and Co (0.5 µM) lactate. These findings present foundational evidence to support the use of metal lactates as potential crop biostimulants due to their ability to both supply nutrients and stimulate plant growth.


Subject(s)
Arabidopsis/metabolism , Chlorides/chemistry , Lactates/chemistry , Metals/chemistry , Acids/chemistry , Agriculture/methods , Chelating Agents , Ecosystem , Hydroponics , Lactic Acid , Metals, Heavy , Micronutrients/chemistry , Organic Chemicals , Seedlings , Seeds/metabolism , Soil , Soil Pollutants/analysis , Triticum , Zinc/chemistry
10.
Front Plant Sci ; 11: 575303, 2020.
Article in English | MEDLINE | ID: mdl-32973860

ABSTRACT

Direct root-zone irrigation (DRZ) is a novel subsurface irrigation strategy initially tested in vineyards for economizing water and securing grape production in arid regions with unstable climatic patterns. However, studies are lacking on the responses of grapevine leaf carbon assimilation and deep rooting patterns to the novel irrigation strategy, which are essential for optimizing grapevine growth and alleviating extreme water stress during periods of heat and drought. Thus, a two-year field study was conducted in a commercial vineyard of Cabernet Sauvignon (Vitis vinifera L.) under a semi-arid climate in Washington, USA to compare the differences in leaf gas exchange and root distribution along the 0-160 cm soil profile, combined with measurements of specific leaf area and total carbon and nitrogen content in leaves and shoots to compare DRZ and traditional surface drip irrigation (SD) under three watering regimes. Compared to SD, significantly higher rates of net CO2 assimilation, stomatal conductance and transpiration in leaves, which positively correlated to midday stem water potential, were found in grapevines irrigated through DRZ in both years. Meanwhile, DRZ reduced total root number by 50-60% and root length density (RLD) by 30-40% in the upper 60 cm soil at high (0.75-0.80 crop evapotranspiration) and moderate (0.60-0.65 crop evapotranspiration) irrigation rates, but no significant differences were found at low (0.45-0.50 crop evapotranspiration) irrigation rate between DRZ and SD. Higher root number and RLD were detected under DRZ within 60-160 cm soil depths, accompanied by a decreased ratio of total carbon to nitrogen content in leaves with slightly increased specific leaf area. Decreased rainfall and increased temperature in 2018 possibly amplified the positive effects of DRZ. Our study indicates that grapevines under DRZ could develop deeper roots for water uptake, which helps ameliorate water stress and improve the photosynthetic rate as well as enhance grapevine adaptation to semi-arid climates.

11.
New Phytol ; 227(6): 1681-1695, 2020 09.
Article in English | MEDLINE | ID: mdl-31863702

ABSTRACT

Pits are regions in the cell walls of plant tracheary elements that lack secondary walls. Each pit consists of a space within the secondary wall called a pit chamber, and a modified primary wall called the pit membrane. The pit membrane facilitates transport of solutions between vessel cells and restricts embolisms during drought. Here we analyzed the role of an angiosperm-specific TPX2-like microtubule protein MAP20 in pit formation using Brachypodium distachyon as a model system. Live cell imaging was used to analyze the interaction of MAP20 with microtubules and the impact of MAP20 on microtubule dynamics. MAP20-specific antibody was used to study expression and localization of MAP20 in different cell types during vascular bundle development. We used an artificial microRNAs (amiRNA) knockdown approach to determine the function of MAP20. MAP20 is expressed during the late stages of vascular bundle development and localizes around forming pits and under secondary cell wall thickenings in metaxylem cells. MAP20 suppresses microtubule depolymerization; however, unlike the animal TPX2 counterpart, MAP20 does not cooperate with the γ-tubulin ring complex in microtubule nucleation. Knockdown of MAP20 causes bigger pits, thinner pit membranes, perturbed vasculature development, lower reproductive potential and higher drought susceptibility. We conclude that MAP20 may contribute to drought adaptation by modulating pit size and pit membrane thickness in metaxylem.


Subject(s)
Brachypodium , Microtubule Proteins , Plant Proteins , Brachypodium/genetics , Brachypodium/physiology , Cell Wall , Droughts , Microtubules
12.
BMC Plant Biol ; 19(1): 282, 2019 Jun 27.
Article in English | MEDLINE | ID: mdl-31248374

ABSTRACT

BACKGROUND: Heavy metal toxicity has become a major threat to sustainable crop production worldwide. Thus, considerable interest has been placed on deciphering the mechanisms that allow plants to combat heavy metal stress. Strategies to deal with heavy metals are largely focused on detoxification, transport and/or sequestration. The P1B subfamily of the Heavy Metal-transporting P-type ATPases (HMAs) was shown to play a crucial role in the uptake and translocation of heavy metals in plants. Here, we report the locus-specific expression changes in the rice HMA genes together with several low-copy cellular genes and transposable elements upon the heavy metal treatment and monitored the transgenerational inheritance of the altered expression states. We reveal that plants cope with heavy metal stress by making heritable changes in gene expression and further determined gene-specific responses to heavy metal stress. RESULTS: We found most HMA genes were upregulated in response to heavy metal stress, and furthermore found evidence of transgenerational memory via changes in gene regulation even after the removal of heavy metals. To explore whether DNA methylation was also altered in response to the heavy metal stress, we selected a Tos17 retrotransposon for bisulfite sequencing and studied its methylation state across three generations. We found the DNA methylation state of Tos17 was altered in response to the heavy metal stress and showed transgenerational inheritance. CONCLUSIONS: Collectively, the present study elucidates heritable changes in gene expression and DNA methylation in rice upon exposure to heavy metal stress and discusses implications of this knowledge in breeding for heavy metal tolerant crops.


Subject(s)
Adenosine Triphosphatases/genetics , Epigenesis, Genetic/genetics , Gene Expression/genetics , Metals, Heavy/adverse effects , Oryza/genetics , Plant Proteins/genetics , Soil Pollutants/adverse effects , Adenosine Triphosphatases/metabolism , Oryza/enzymology , Oryza/metabolism , Plant Proteins/metabolism , Stress, Physiological
13.
Plants (Basel) ; 8(6)2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31174296

ABSTRACT

Brachypodium distachyon is an established model for monocotyledonous plants. Numerous markers intended for gene discovery and population genetics have been designed. However to date, very few indel markers with larger and easily scored length polymorphism differences, that distinguish between the two morphologically similar and highly utilized B. distachyon accessions, Bd21, the reference genome accession, and Bd21-3, the transformation-optimal accession, are publically available. In this study, 22 indel markers were designed and utilized to produce length polymorphism differences of 150 bp or more, for easy discrimination between Bd21 and Bd21-3. When tested on four other B. distachyon accessions, one case of multiallelism was observed. It was also shown that the markers could be used to determine homozygosity and heterozygosity at specific loci in a Bd21 x Bd3-1 F2 population. The work done in this study allows researchers to maintain the fidelity of Bd21 and Bd21-3 stocks for both transgenic and nontransgenic studies. It also provides markers that can be utilized in conjunction with others already available for further research on population genetics, gene discovery and gene characterization, all of which are necessary for the relevance of B. distachyon as a model species.

14.
Theor Appl Genet ; 132(8): 2295-2308, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31098756

ABSTRACT

KEY MESSAGE: We report rampant homoeologous exchanges in progenies of a newly synthesized rice segmental allotetraploid and demonstrate their consequences to changes of gene expression and alternative splicing. Allopolyploidization is recurrent across the tree of angiosperms and known as a driving evolutionary force in both plants and animals. A salient feature of allopolyploidization is the induction of homoeologous exchange (HE) events between the constituent subgenomes, which may in turn cause changes in gene expression, transcript alternative splicing, and phenotypic novelty. However, this issue has been poorly studied, largely because lack of a system in which the exact parentage donating the subgenomes is known and the HE events are occurring in real time. Here, we employed whole-genome re-sequencing and RNA-seq-based transcriptome profiling in four randomly chosen progeny individuals (at the 10th-selfed generation) of segmental allotetraploids that were constructed by colchicine-mediated whole-genome doubling of F1 hybrids between the two subspecies (japonica and indica) of Asian cultivated Oryza sativa. We show that rampant HE events occurred in these tetraploid individuals, which converted most of the otherwise heterozygous genomic regions into a homogenized state of one parental subgenome. We demonstrate that genes within these homogenized genomic regions in the tetraploids showed high frequencies of altered expression and enhanced alternative splicing relative to their counterparts in the corresponding diploid parents in the embryo tissue. Intriguingly, limited overlaps between the differentially expressed genes and the differential alternative spliced genes were identified, which were partitioned to distinctly enriched gene ontology terms. Together, our results indicate that HE is a major mechanism to rapidly generate novelty in gene expression and transcriptome diversity, which may facilitate phenotypic innovation in nascent allopolyploids and relevant to allopolyploid crop breeding.


Subject(s)
Alternative Splicing/genetics , Gene Expression Regulation, Plant , Oryza/genetics , Polyploidy , Diploidy , Genome, Plant
15.
Plant Cell Physiol ; 60(7): 1487-1503, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31004494

ABSTRACT

Plant cells sheath themselves in a complex lattice of polysaccharides, proteins and enzymes forming an integral matrix known as the cell wall. Cellulose microfibrils, the primary component of cell walls, are synthesized at the plasma membrane by CELLULOSE SYNTHASE A (CESA) proteins throughout cellular growth and are responsible for turgor-driven anisotropic expansion. Associations between hormone signaling and cell wall biosynthesis have long been suggested, but recently direct links have been found revealing hormones play key regulatory roles in cellulose biosynthesis. The radially swollen 1 (rsw1) allele of Arabidopsis thaliana CESA1 harbors a single amino acid change that renders the protein unstable at high temperatures. We used the conditional nature of rsw1 to investigate how auxin contributes to isotropic growth. We found that exogenous auxin treatment reduces isotropic swelling in rsw1 roots at the restrictive temperature of 30�C. We also discovered decreases in auxin influx between rsw1 and wild-type roots via confocal imaging of AUX1-YFP, even at the permissive temperature of 19�C. Moreover, rsw1 displayed mis-expression of auxin-responsive and CESA genes. Additionally, we found altered auxin maxima in rsw1 mutant roots at the onset of swelling using DII-VENUS and DR5:vYFP auxin reporters. Overall, we conclude disrupted cell wall biosynthesis perturbs auxin transport leading to altered auxin homeostasis impacting both anisotropic and isotropic growth that affects overall root morphology.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cell Wall/metabolism , Glucosyltransferases/metabolism , Indoleacetic Acids/metabolism , Alleles , Arabidopsis/enzymology , Arabidopsis/genetics , Benzamides/pharmacology , Cellulose/biosynthesis , Genes, Plant/genetics , Glucosyltransferases/genetics , Mutation/genetics , Plant Roots/drug effects , Plant Roots/metabolism
16.
Int J Mol Sci ; 19(10)2018 Sep 29.
Article in English | MEDLINE | ID: mdl-30274246

ABSTRACT

An understanding of the genes and mechanisms regulating environmental stress in crops is critical for boosting agricultural yield and safeguarding food security. Under adverse conditions, response pathways are activated for tolerance or resistance. In multiple species, the alternative oxidase (AOX) genes encode proteins which help in this process. Recently, this gene family has been extensively investigated in the vital crop plants, wheat, barley and rice. Cumulatively, these three species and/or their wild ancestors contain the genes for AOX1a, AOX1c, AOX1e, and AOX1d, and common patterns in the protein isoforms have been documented. Here, we add more information on these trends by emphasizing motifs that could affect expression, and by utilizing the most recent discoveries from the AOX isoform in Trypanosoma brucei to highlight clade-dependent biases. The new perspectives may have implications on how the AOX gene family has evolved and functions in monocots. The common or divergent amino acid substitutions between these grasses and the parasite are noted, and the potential effects of these changes are discussed. There is the hope that the insights gained will inform the way future AOX research is performed in monocots, in order to optimize crop production for food, feed, and fuel.


Subject(s)
Hordeum/metabolism , Mitochondrial Proteins/metabolism , Oryza/metabolism , Oxidoreductases/metabolism , Plant Proteins/metabolism , Protein Isoforms/metabolism , Triticum/metabolism , Gene Expression Regulation, Plant , Hordeum/parasitology , Mitochondrial Proteins/genetics , Oryza/parasitology , Oxidoreductases/genetics , Plant Proteins/genetics , Protein Isoforms/genetics , Triticum/parasitology , Trypanosoma brucei brucei/pathogenicity
17.
PLoS One ; 13(8): e0201439, 2018.
Article in English | MEDLINE | ID: mdl-30074999

ABSTRACT

A comprehensive understanding of wheat responses to environmental stress will contribute to the long-term goal of feeding the planet. ALERNATIVE OXIDASE (AOX) genes encode proteins involved in a bypass of the electron transport chain and are also known to be involved in stress tolerance in multiple species. Here, we report the identification and characterization of the AOX gene family in diploid and hexaploid wheat. Four genes each were found in the diploid ancestors Triticum urartu, and Aegilops tauschii, and three in Aegilops speltoides. In hexaploid wheat (Triticum aestivum), 20 genes were identified, some with multiple splice variants, corresponding to a total of 24 proteins for those with observed transcription and translation. These proteins were classified as AOX1a, AOX1c, AOX1e or AOX1d via phylogenetic analysis. Proteins lacking most or all signature AOX motifs were assigned to putative regulatory roles. Analysis of protein-targeting sequences suggests mixed localization to the mitochondria and other organelles. In comparison to the most studied AOX from Trypanosoma brucei, there were amino acid substitutions at critical functional domains indicating possible role divergence in wheat or grasses in general. In hexaploid wheat, AOX genes were expressed at specific developmental stages as well as in response to both biotic and abiotic stresses such as fungal pathogens, heat and drought. These AOX expression patterns suggest a highly regulated and diverse transcription and expression system. The insights gained provide a framework for the continued and expanded study of AOX genes in wheat for stress tolerance through breeding new varieties, as well as resistance to AOX-targeted herbicides, all of which can ultimately be used synergistically to improve crop yield.


Subject(s)
Aegilops/genetics , Genes, Plant/genetics , Mitochondrial Proteins/genetics , Multigene Family/genetics , Oxidoreductases/genetics , Plant Proteins/genetics , Triticum/physiology , Diploidy , Gene Expression Regulation, Developmental/physiology , Gene Expression Regulation, Plant/physiology , Genome, Plant/genetics , Herbicide Resistance/genetics , Phylogeny , Polyploidy , Stress, Physiological/physiology , Triticum/genetics , Whole Genome Sequencing
18.
Plant J ; 96(3): 532-545, 2018 11.
Article in English | MEDLINE | ID: mdl-30054951

ABSTRACT

Grass biomass is comprised chiefly of secondary walls that surround fiber and xylem cells. A regulatory network of interacting transcription factors in part regulates cell wall thickening. We identified Brachypodium distachyon SECONDARY WALL ASSOCIATED MYB1 (SWAM1) as a potential regulator of secondary cell wall biosynthesis based on gene expression, phylogeny, and transgenic plant phenotypes. SWAM1 interacts with cellulose and lignin gene promoters with preferential binding to AC-rich sequence motifs commonly found in the promoters of cell wall-related genes. SWAM1 overexpression (SWAM-OE) lines had greater above-ground biomass with only a slight change in flowering time while SWAM1 dominant repressor (SWAM1-DR) plants were severely dwarfed with a striking reduction in lignin of sclerenchyma fibers and stem epidermal cell length. Cellulose, hemicellulose, and lignin genes were significantly down-regulated in SWAM1-DR plants and up-regulated in SWAM1-OE plants. There was no reduction in bioconversion yield in SWAM1-OE lines; however, it was significantly increased for SWAM1-DR samples. Phylogenetic and syntenic analyses strongly suggest that the SWAM1 clade was present in the last common ancestor between eudicots and grasses, but is not in the Brassicaceae. Collectively, these data suggest that SWAM1 is a transcriptional activator of secondary cell wall thickening and biomass accumulation in B. distachyon.


Subject(s)
Brachypodium/genetics , Plant Proteins/genetics , Biomass , Brachypodium/growth & development , Brassicaceae/genetics , Brassicaceae/growth & development , Cell Wall/metabolism , Cellulose/metabolism , Lignin/metabolism , Plant Proteins/metabolism , Polysaccharides/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
19.
Theor Appl Genet ; 131(6): 1273-1285, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29478186

ABSTRACT

KEY MESSAGE: We report a repertoire of diverse aneuploids harbored by a newly synthesized segmental allotetraploid rice population with fully sequenced sub-genomes and demonstrate their retention features and phenotypic consequences. Aneuploidy, defined as unequal numbers of different chromosomes, is a large-effect genetic variant and may produce diverse cellular and organismal phenotypes. Polyploids are more permissive to chromosomal content imbalance than their diploid and haploid counterparts, and therefore, may enable more in-depth investigation of the phenotypic consequences of aneuploidy. Based on whole-genome resequencing, we identify that ca. 40% of the 312 selfed individual plants sampled from an early generation rice segmental allotetraploid population are constitutive aneuploids harboring 55 distinct aneuploid karyotypes. We document that gain of a chromosome is more prevalent than loss of a chromosome, and the 12 rice chromosomes have distinct tendencies to be in an aneuploid state. These properties of aneuploidy are constrained by multiple factors including the number of genes residing on the chromosome and predicted functional connectivity with other chromosomes. Two broad categories of aneuploidy-associated phenotypes are recognized: those shared by different aneuploids, and those associated with aneuploidy of a specific chromosome. A repertoire of diverse aneuploids in the context of a segmental allotetraploid rice genome with fully sequenced sub-genomes provides a tractable resource to explore the roles of aneuploidy in nascent polyploid genome evolution and helps to decipher the mechanisms conferring karyotypic stabilization on the path to polyploid speciation and towards artificial construction of novel polyploid crops.


Subject(s)
Aneuploidy , Oryza/genetics , Plant Breeding , Polyploidy , Genome, Plant , Karyotype , Phenotype
20.
Sci Rep ; 7(1): 15111, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29118446

ABSTRACT

The mechanism of cellulose synthesis has been studied by characterizing the motility of cellulose synthase complexes tagged with a fluorescent protein; however, this approach has been used exclusively on the hypocotyl of Arabidopsis thaliana. Here we characterize cellulose synthase motility in the model grass, Brachypodium distachyon. We generated lines in which mEGFP is fused N-terminal to BdCESA3 or BdCESA6 and which grew indistinguishably from the wild type (Bd21-3) and had dense fluorescent puncta at or near the plasma membrane. Measured with a particle tracking algorithm, the average speed of GFP-BdCESA3 particles in the mesocotyl was 164 ± 78 nm min-1 (error gives standard deviation [SD], n = 1451 particles). Mean speed in the root appeared similar. For comparison, average speed in the A. thaliana hypocotyl expressing GFP-AtCESA6 was 184 ± 86 nm min-1 (n = 2755). For B. distachyon, we quantified root diameter and elongation rate in response to inhibitors of cellulose (dichlorobenylnitrile; DCB), microtubules (oryzalin), or actin (latrunculin B). Neither oryzalin nor latrunculin affected the speed of CESA complexes; whereas, DCB reduced average speed by about 50% in B. distachyon and by about 35% in A. thaliana. Evidently, between these species, CESA motility is well conserved.


Subject(s)
Brachypodium/metabolism , Cell Wall/metabolism , Glucosyltransferases/metabolism , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Brachypodium/genetics , Cell Membrane/metabolism , Cell Wall/genetics , Cellulose/metabolism , Glucosyltransferases/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Microscopy, Fluorescence , Plant Proteins/genetics , Plants, Genetically Modified , Protein Transport , Seedlings/genetics , Seedlings/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...