Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Prod Res ; : 1-10, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329045

ABSTRACT

A new eremophilane sesquiterpene, named engleromophilane (1) together with known eremoxylarin E (2) and steroids (3-7) were isolated from the fungus Engleromyces sinensis culture. The structures were deduced by the analysis of spectroscopic and MS data, together with the comparison of calculated 13C NMR chemical shifts and Electronic Circular Dichroism (ECD) spectra. Compound 1 showed cytotoxic effects against Hela, PC-3, HT29 and A549 cell lines with IC50 in the ranges of 4.84-9.48 µg/mL. Compounds 1 and 2 exhibited substantial antimicrobial activity against E. coli, S. aureus, and B. subtilis. Moreover, compounds 1-3 showed α-glucosidase inhibitory activity, in which 2 displayed a strong inhibitory effect with an IC50 value of 0.13 ± 0.01 µg/mL. This work has given additional value to the E. sinensis fungus as a remarkable bioactive compound producer, together with the possibility of increasing cultivation to industrial scales.

2.
J Fungi (Basel) ; 9(11)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37998922

ABSTRACT

The rapid emergence of resistant bacteria is occurring worldwide, endangering the efficacy of antibiotics. Hence, there is a need to search for new sources of antibiotics that either exhibit novel structures or express a new mechanism of action. The lichen Usnea, with its wide range of unique, biologically potent secondary metabolites, may solve this problem. In this study, Usnea species were collected in the Northern Philippines, identified through combined morphological and biochemical characterization, and tested for antimicrobial activities against the multidrug-resistant ESKAPE pathogens, i.e., Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae, two standard antibiotic-sensitive test bacteria, and a yeast. A total of 46 lichen specimens were collected and later identified as Usnea baileyi (10), U. diffracta (10), U. glabrata (12), U. longissima (4), and U. rubicunda (10). The results show that the crude extracts of the Usnea species exhibited promising in vitro inhibitory activities against standard antibiotic-sensitive (E. faecalis ATCC 29212) and multidrug-resistant (methicillin-resistant S. aureus and E. faecalis) Gram-positive bacteria. Additionally, lichen compounds of representative specimens per species were identified and profiled using thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). The detection of lichen acids (LA) via HPLC showed the presence of 24 peaks of lichen acids. TLC-bioautography identified the bioactive lichen acids as alectronic acid, connorstictic acid, consalazinic acid, diffractaic acid, echinocarpic acid, erythrin acid, galbinic acid, hypoconstictic acid, hyposalazinic acid, hypostictic acid, lobaric acid, menegazzaic acid, micareic acid, pannarin, salazinic acid, stictic acid, and usnic acid. Our study highlighted the wide spectrum of opportunities for using lichens for the discovery of potential antimicrobial agents.

3.
Bot Stud ; 64(1): 15, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37382773

ABSTRACT

The Xylariaceae and its relatives rank as one of the best-known members of the Ascomycota. They are now well recognized for their diversity, global distribution, ecological activities and their outstanding novel metabolites with wide ranging bioactivity.

4.
J Nat Med ; 77(2): 403-411, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36746835

ABSTRACT

In the continuing discovery and structure elucidation of natural xanthone dimers, which are still rarely reported in absolute configuration, three new xanthone dimers, eumitrins I-K (1-3) were isolated from the lichen Usnea baileyi, a rich source of natural xanthone dimers. Their structures were elucidated unambiguously by spectroscopic analyses, including high-resolution electrospray ionization mass spectrometry (HRESIMS), 1D and 2D nuclear magnetic resonance spectroscopy (1D and 2D NMR). The absolute configuration of all three compounds was established through DP4 probability and ECD calculation. All compounds revealed weak activity for their enzymatic inhibition against α-glucosidase and tyrosinase, as well as antibacterial activity.


Subject(s)
Lichens , Xanthones , Molecular Structure , Xanthones/chemistry
5.
Nat Prod Res ; 37(9): 1480-1490, 2023 May.
Article in English | MEDLINE | ID: mdl-34984944

ABSTRACT

The lichen Usnea baileyi is a fruticose lichen belonging to the Usnea genus. It is well known as a rich source of natural xanthone dimers and possesses various bioactivities. Nevertheless, the chemical investigation on this type of lichen is still rare as most of researches reported its components without structural elucidation. Herein, in the continuous study on this type of lichen, we further isolate xanthone dimers from the dichloromethane extract and explore three new xanthone dimers, eumitrins F - H (1 - 3). Their structures were elucidated unambiguously by spectroscopic analyses, including high resolution electrospray ionisation mass spectrometry (HRESIMS), 1 D and 2 D nuclear magnetic resonance spectroscopy (1 D and 2 D NMR), and DP4 probability. All compounds were evaluated for their enzyme inhibition against α-glucosidase, tyrosinase, and antibacterial activity. They revealed moderate antimicrobial and weak tyrosinase inhibition. For α-glucosidase inhibition, compound 3 displayed the most significant inhibitory against α-glucosidase possessing an IC50 value of 64.2 µM.


Subject(s)
Lichens , Usnea , Xanthones , alpha-Glucosidases , Monophenol Monooxygenase , Usnea/chemistry , Xanthones/chemistry , Hydrogen/chemistry , Fluorine/chemistry
6.
Phytochemistry ; 199: 113174, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35358598

ABSTRACT

Chromatographic purification of the CH2Cl2 extract of Myristica fragrans seeds provided 19 known compounds, four dihydrofuran neolignans, licarines A, B and maceneolignans A, B were among the isolates. Prior to hydrogenation, in order to obtain their di- and tetrahydrogenated products, the absolute configuration of these compounds was thoroughly investigated based on their optical rotations and ECD spectra. This report provides evidences concerning the disagreement between the use of an aromatic quadrant rule and time-dependent density function theory calculation for the prediction of the absolute configurations at C-7 and C-8 in these dihydrobenzofuran neolignans. The absolute configurations of licarines A, B and maceneolignans A, B were subsequently redefined. The antimicrobial and cytotoxic activities of the isolates and reduction products of licarines A, B and maceneolignans A, B were also investigated.


Subject(s)
Anti-Infective Agents , Lignans , Myristica , Lignans/chemistry , Myristica/chemistry , Plant Extracts/analysis , Seeds/chemistry
7.
Ecol Evol ; 12(1): e8471, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35136549

ABSTRACT

The Red Queen dynamic is often brought into play for antagonistic relationships. However, the coevolutionary effects of mutualistic interactions, which predict slower evolution for interacting organisms (Red King), have been investigated to a lesser extent. Lichens are a stable, mutualistic relationship of fungi and cyanobacteria and/or algae, which originated several times independently during the evolution of fungi. Therefore, they represent a suitable system to investigate the coevolutionary effect of mutualism on the fungal genome. We measured substitution rates and selective pressure of about 2000 protein-coding genes (plus the rDNA region) in two different classes of Ascomycota, each consisting of closely related lineages of lichenized and non-lichenized fungi. Our results show that independent lichenized clades are characterized by significantly slower rates for both synonymous and non-synonymous substitutions. We hypothesize that this evolutionary pattern is connected to the lichen life cycle (longer generation time of lichenized fungi) rather than a result of different selection strengths, which is described as the main driver for the Red Kind dynamic. This first empirical evidence of slower evolution in lichens provides an important insight on how biotic cooperative interactions are able to shape the evolution of symbiotic organisms.

8.
Bioorg Chem ; 110: 104799, 2021 05.
Article in English | MEDLINE | ID: mdl-33730671

ABSTRACT

The isopimarane diterpene, 1α,11α-dihydroxyisopimara-8(14),15-diene (1), is the major constituents from the rhizomes of Kaempferia marginata (Zingiberaceae), a Thai medicinal plant. The microbial transformation of parent compound 1 by the fungus Cunninghamella echinulata NRRL 1386 gave five new metabolites, 7α,11α-dihydroxy-1-oxoisopimara-8(14),15-diene (2), 3ß,7α,11α-trihydroxy-1-oxoisopimara-8(14),15-diene (3), 7ß,11α-dihydroxy-1-oxoisopimara-8(14),15-diene (4), 7α-hydroxy-1,11-dioxoisopimara-8(14),15-diene (5) and 1α,7ß,11α-trihydroxyisopimara-8(14),15-diene (6), together with three known metabolites, 7-9. The structures of the new metabolites were elucidated by spectroscopic techniques. The known compounds were identified by comparison of the spectroscopic and physical data with those of reported values. The parent compound 1 and the metabolites have been neuroprotective activities evaluated against Aß25-35-induced damage in human neuroblastoma cells (SK-N-SH). Among them, compounds 1-3, 5 and 7-9 had significant neuroprotective activities at a concentration of 2.5 µM. The results demonstrated that these compounds might be worth for further development into therapeutic agents for the treatment of neurodegenerative diseases.


Subject(s)
Amyloid beta-Peptides/antagonists & inhibitors , Biotransformation , Neuroprotective Agents/pharmacology , Peptide Fragments/antagonists & inhibitors , Zingiberaceae/chemistry , Amyloid beta-Peptides/metabolism , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Molecular Structure , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Peptide Fragments/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
9.
MycoKeys ; (34): 25-34, 2018.
Article in English | MEDLINE | ID: mdl-29780270

ABSTRACT

Architrypethelium murisporum Luangsuphabool, Lumbsch & Sangvichien is described for a crustose lichen occurring in dry evergreen forest in Thailand. It is characterised by a green to yellow-green corticated thallus, perithecia fused in black pseudostromata with white rim surrounding the ostiole and small, hyaline and muriform ascospores. Currently, all species in the genus Architrypethelium have transversely septate ascospores, hence the discovery of this new species indicates that ascospore septation is variable within the genus, similar to numerous other groups of lichen-forming ascomycetes. Phylogenetic analyses of two loci (mtSSU and nuLSU) supported the position of the new species within Architrypethelium. This is the first report of the genus in Southeast Asia.

10.
IMA Fungus ; 2(2): 143-53, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22679599

ABSTRACT

A total of 292 lichen samples, representing over 200 species and at least 65 genera and 26 families, were collected, mainly in Thailand; 170 of the specimens discharged ascospores in the laboratory. Generally, crustose lichens exhibited the highest discharge rates and percentage germination. In contrast, foliose lichen samples, although having a high discharge rate, had a lower percentage germination than crustose species tested. A correlation with season was indicated for a number of species. Continued development of germinated ascospores into recognizable colonies in pure culture was followed for a selection of species. The most successful medium tried was 2 % Malt-Yeast extract agar (MYA), and under static conditions using a liquid culture medium, a sponge proved to be the best of several physical carriers tested; this novel method has considerable potential for experimental work with lichen mycobionts.

11.
Arch Pharm Res ; 29(2): 140-4, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16526278

ABSTRACT

Four xanthones were isolated from mycelia of Emericella variecolor, an endophytic fungus isolated from the leaves of Croton oblongifolius. Their structures were elucidated by spectroscopic analysis to be shamixanthone, 14-methoxytajixanthone-25-acetate, tajixanthone methanoate, and tajixanthone hydrate. All compounds were tested for cytotoxic activity against various human tumor cell lines including gastric carcinoma, colon carcinoma, breast carcinoma, human hepatocarcinoma, and lung carcinoma. The antitumor activities of these xanthones were compared with that of doxorubicin hydrochloride, a chemotherapeutic substance. All of them showed moderate activities and were selective against gastric carcinoma, colon carcinoma, and breast carcinoma. Only tajixanthone hydrate exhibited moderate activity against all cancer cell lines. Furthermore, under the test conditions it was found that 14-methoxytajixanthone-25-acetate and tajixanthone hydrate are almost as active as doxorubicin hydrochloride against gastric carcinoma (KATO3) and breast carcinoma (BT474).


Subject(s)
Antineoplastic Agents/pharmacology , Croton/microbiology , Emericella/chemistry , Xanthones/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Line, Tumor , Dose-Response Relationship, Drug , Emericella/isolation & purification , Humans , Inhibitory Concentration 50 , Plant Leaves/microbiology , Xanthones/chemistry , Xanthones/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...