Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Plant Sci ; 239: 216-29, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26398806

ABSTRACT

During their life cycle, plants have to cope with fluctuating environmental conditions. The perception of the stressful environmental conditions induces a specific stress hormone signature specifying a proper response with an efficient fitness. By reverse genetics, we isolated and characterized a novel mutation in Arabidopsis, associated with environmental stress responses, that affects the At5g11250/BURNOUT1 (BNT1) gene which encode a Toll/Interleukin1 receptor-nucleotide binding site leucine-rich repeat (TIR-NBS-LRR) protein. The knock-out bnt1 mutants displayed, in the absence of stress conditions, a multitude of growth and development defects, suchas severe dwarfism, early senescence and flower sterility, similar to those observed in vitro in wild type plants upon different biotic and/or abiotic stresses. The disruption of BNT1 causes also a drastic increase of the jasmonic, salicylic and abscisic acids as well as ethylene levels. Which was consistent with the expression pattern observed in bnt1 showing an over representation of genes involved in the hormonal response to stress? Therefore, a defect in BNT1 forced the plant to engage in an exhausting general stress response, which produced frail, weakened and poorly adapted plants expressing "burnout" syndromes. Furthermore, by in vitro phenocopying experiments, physiological, chemical and molecular analyses, we propose that BNT1 could represent a molecular link between stress perception and specific hormonal signature.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant , Heat-Shock Proteins/genetics , Plant Growth Regulators/genetics , Stress, Physiological/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Heat-Shock Proteins/metabolism , Plant Growth Regulators/metabolism
2.
Trends Plant Sci ; 16(11): 597-606, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21907610

ABSTRACT

In vitro shoot organogenesis and plant regeneration are crucial for both plant biotechnology and the fundamental study of plant biology. Although the importance of auxin and cytokinin has been known for more than six decades, the underlying molecular mechanisms of their function have only been revealed recently. Advances in identifying new Arabidopsis genes, implementing live-imaging tools and understanding cellular and molecular networks regulating de novo shoot organogenesis have helped to redefine the empirical models of shoot organogenesis and plant regeneration. Here, we review the functions and interactions of genes that control key steps in two distinct developmental processes: de novo shoot organogenesis and lateral root formation.


Subject(s)
Organogenesis/genetics , Plant Shoots/growth & development , Plant Shoots/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Models, Biological , Plant Roots/genetics , Plant Roots/growth & development
3.
Protoplasma ; 234(1-4): 65-75, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18841324

ABSTRACT

The role of plant vitronectin-like protein (Vn) in Agrobacterium-host plant interactions and receptor-specific bacterial attachment is unclear and still open to debate. Using a well-established Agrobacterium-mediated Arabidopsis transformation system, the marker gene beta-glucuronidase (GUS) of Escherichia coli, and biochemical and cytological methods, such as ELISA tests, immunoblots, immunolocalization, and functional in vitro binding assays, we have reassessed the role of Vn in receptor-specific bacterial attachment and transformation. We provide evidence that Vn is present in the host plant cells and anti-human vitronectin antibody cross-reacts with a 65-kDa protein from Arabidopsis cells. The specificity of the immunological cross-reactivity of anti-vitronectin antibodies was further demonstrated by ELISA competition experiments. Immunogold labeling showed that Vn is localized in the plant cell wall, and its level increased considerably after phytohormone treatment of the petiole explants. However, Agrobacterium attachment was unaffected, and no inhibition of petiole cell transformation was detected in the presence of human vitronectin and anti-vitronectin antibodies in the media. Additionally, no correlation between the occurrence of Vn, attachment of bacteria to the cells, and susceptibility to Agrobacterium-mediated transformation was observed. Taken together, our data do not support a functional role of plant Vn as the receptor for site-specific Agrobacterium attachment leading to the transformation of Arabidopsis cells.


Subject(s)
Agrobacterium tumefaciens/physiology , Arabidopsis/genetics , Bacterial Adhesion , Cell Wall/metabolism , Transformation, Genetic , Vitronectin/metabolism , Agrobacterium tumefaciens/metabolism , Agrobacterium tumefaciens/ultrastructure , Arabidopsis/cytology , Arabidopsis/ultrastructure , Cell Wall/ultrastructure , Microscopy, Immunoelectron , Transfection , Vitronectin/genetics
4.
Plant J ; 55(4): 665-86, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18452589

ABSTRACT

SUMMARY: Sugars modulate many vital metabolic and developmental processes in plants, from seed germination to flowering, senescence and protection against diverse abiotic and biotic stresses. However, the exact mechanisms involved in morphogenesis, developmental signalling and stress tolerance remain largely unknown. Here we report the characterization of a novel Arabidopsis thaliana mutant, sweetie, with drastically altered morphogenesis, and a strongly modified carbohydrate metabolism leading to elevated levels of trehalose, trehalose-6-phosphate and starch. We additionally show that the disruption of SWEETIE causes significant growth and developmental alterations, such as severe dwarfism, lancet-shaped leaves, early senescence and flower sterility. Genes implicated in sugar metabolism, senescence, ethylene biosynthesis and abiotic stress were found to be upregulated in sweetie. Our physiological, biochemical, genetic and molecular data indicate that the mutation in sweetie was nuclear, single and recessive. The effects of metabolizable sugars and osmolytes on sweetie morphogenesis were distinct; in light, sweetie was hypersensitive to sucrose and glucose during vegetative growth and a partial phenotypic reversion took place in the presence of high sorbitol concentrations. However, SWEETIE encodes a protein that is unrelated to any known enzyme involved in sugar metabolism. We suggest that SWEETIE plays an important regulatory function that influences multiple metabolic, hormonal and stress-related pathways, leading to altered gene expression and pronounced changes in the accumulation of sugar, starch and ethylene.


Subject(s)
Aging/physiology , Arabidopsis/genetics , Carbohydrates/physiology , Arabidopsis/growth & development , DNA, Bacterial/genetics , DNA, Single-Stranded/genetics , Hypocotyl/physiology , Mutation , Seedlings/physiology , Starch/genetics , Starch/metabolism , Sucrose/metabolism
5.
Plant Signal Behav ; 3(9): 722-5, 2008 Sep.
Article in English | MEDLINE | ID: mdl-19704840

ABSTRACT

In plants, sugars affect growth and development and play an important role in the intricate machinery of signal transduction. Understanding the mechanisms behind the flux of sugar in the plant is of central interest. We recently characterized an Arabidopsis mutant: sweetie, which is defective in the control of growth and development, sterile, shows premature senescence and affects sugar metabolism. Our microarray analysis showed that 15 genes annotated as sugar transporter related proteins were found to be upregulated in sweetie while one sugar transporter gene was found to be downregulated. Most of them are unspecified sugar transporters but four genes have been annotated as monosaccharide transporters and one has been annotated as a disaccharide transporter. Moreover, as computer analyses predicted that SWEETIE might be a membrane protein and might have a function of glycosyl transferase, our data suggest that SWEETIE could be involved in the general control of sugar flux and modulates many important processes such as morphogenesis, flowering, stress responses and senescence.

6.
Pest Manag Sci ; 62(12): 1150-4, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16953493

ABSTRACT

Four chitinase inhibitors, cyclo-(Proline-Tyrosine), cyclo-(Histidine-Proline), allosamidin and psammaplin A, were selected for in vitro feeding experiments with the peach-potato aphid, Myzus persicae (Sulzer), under controlled photoperiod and temperature conditions. Artificial diets were used to provide chitinase inhibitors at 10, 50 and 100 microg mL(-1) to M. persicae. Except for cyclo-(Proline-Tyrosine), which did not modify aphid demographic parameters, chitinase inhibitors induced differential aphicidal effects on M. persicae. At all doses, cyclo-(Histidine-Proline) induced significant effects affecting daily fecundity, intrinsic rate of natural increase (r(m)) and doubling time of population. When compared with the control diet, allosamidin decreased nymph survival and daily fecundity, increasing the doubling time of population from 1 to 1.5 days. Psammaplin A was the most toxic inhibitor when delivered via artificial diet, as it induced the death of all aphids reared at 50 and 100 microg mL(-1). The results demonstrate the potential use of chitinase inhibitors as aphid management tools.


Subject(s)
Acetylglucosamine/analogs & derivatives , Aphids , Chitinases/antagonists & inhibitors , Disulfides , Insecticides , Trisaccharides , Tyrosine/analogs & derivatives , Animals , Female
7.
Plant Cell Rep ; 25(4): 265-73, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16222532

ABSTRACT

We present efficient protocols for the regeneration of fertile plants from corm explants of Hypoxis hemerocallidea Fisch. and C. A. Mey. landrace Gaza, either by direct multiple shoot formation or via shoot organogenesis from corm-derived calluses. The regeneration efficiency depended on plant growth regulator concentrations and combinations. Multiple direct shoot formation with high frequency (100% with 5-8 shoots/explant) was obtained on a basal medium (BM) supplemented with 3 mg/l kinetin (BM1). However, efficient indirect regeneration occurred when corm explants were first plated on callus induction medium (BM2) with high kinetin (3 mg/l) and naphthalene acetic acid (NAA 1 mg/l), and then transferred to shoot inducing medium (BM3) containing BA (1.5 mg/l) and NAA (0.5 mg/l). Shoot regeneration frequency was 100% and 30-35 shoots per explant were obtained. The regenerated shoots were rooted on a root inducing medium (BM4) containing NAA (0.1 mg/l). Rooted plantlets were transferred to the greenhouse. The regenerants were morphologically normal and fertile. Flow cytometric analyses and chloroplast counts of guard cells suggested that the regenerants were diploid. Efficient cloning protocols described here, have the potential not only to substantially reduce the pressure on natural populations but also for wider biotechnological applications of Hypoxis hemerocallidea-an endangered medicinal plant.


Subject(s)
Hypoxis/growth & development , Tissue Culture Techniques/methods , 2,4-Dichlorophenoxyacetic Acid/pharmacology , Benzyl Compounds , Culture Media , Hypoxis/drug effects , Hypoxis/genetics , Kinetin/pharmacology , Naphthaleneacetic Acids/pharmacology , Plant Growth Regulators/pharmacology , Plant Roots/growth & development , Plant Shoots/growth & development , Ploidies , Purines , Regeneration
8.
Biotechnol Bioeng ; 88(6): 722-9, 2004 Dec 20.
Article in English | MEDLINE | ID: mdl-15532042

ABSTRACT

Hairy roots obtained by transformation via Agrobacterium rhizogenes provide an artificial plant material devoid of aerial parts with high growth on hormone-free media. Fundamental knowledge of hairy root physiology is essential to develop and control its culture. In contrast to shake-flask cultures, a bioreactor set-up combined with on-line data logging provides an efficient tool to study rapid physiological variations in hairy root cultures. Datura innoxia hairy roots were grown in a bioreactor equipped with on-line data analyses of pH, dissolved oxygen (pO2), conductivity, oxygen, and carbon dioxide. The experiments were done at a constant temperature and in the absence of light cues. The results obtained showed that the carbon dioxide evolution rate (CER) presented regular oscillations during the culture. Similar oscillations were also observed for the oxygen uptake rate (OUR). These signals were treated mathematically to look for the existence of a rhythm. An autocorrelation function was used to detect any periodic components. The results demonstrate that hairy root respiration exhibited peaks of 1 day. These oscillations, having a period of about 24 h, were also observed in pH and conductivity signals, although not for the pO2 signal. The data acquired in the absence of hairy roots showed that the observed periodic behavior was not an artifact. No effect on rhythms was observed by the imposition of an external "day/night" cycle. The fact that oscillations persisted in the absence of external stimuli, with a free-running period of 24 h, suggests that a circadian rhythm exists in hairy roots of D. innoxia.


Subject(s)
Biological Clocks/physiology , Carbon Dioxide/metabolism , Cell Culture Techniques/methods , Circadian Rhythm/physiology , Datura/physiology , Oxygen/metabolism , Plant Roots/physiology , Algorithms , Bioreactors , Cells, Cultured , Computer Simulation , Hydrogen-Ion Concentration , Models, Biological , Oxygen Consumption/physiology
9.
J Nat Prod ; 67(3): 348-51, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15043408

ABSTRACT

O-Aryl-d-glucoside (4-7) and d-xyloside (8-10) derivatives were synthesized and tested on Agrobacterium virH gene induction and plant transformation. alpha- or beta-Glycosides enhanced vir activity at concentrations above 250 micromicro. The highest vir activity was observed with beta-glucoside derivative 4 at 10 mM. A marked difference between phenol glucoside derivative 4 and the corresponding free phenol on the growth of transformants was observed. The regenerated transgenic tissues, after transformation on medium containing acetosyringyl beta-glucoside 4, grew at twice the rate of those on medium containing only free acetosyringone (AS). Compound 4 was less toxic for tobacco explants compared to the corresponding free phenol. However, the xyloside derivatives tested (8-10) were less effective for gene induction compared with corresponding free phenols.


Subject(s)
Agrobacterium tumefaciens/genetics , Bacterial Proteins/drug effects , Bacterial Proteins/genetics , Gene Expression/drug effects , Glycosides/pharmacology , Phenols/pharmacology , Virulence Factors/genetics , Glycosides/chemical synthesis , Lignin , Molecular Structure , Nicotiana/drug effects
10.
J Nat Prod ; 65(8): 1131-5, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12193016

ABSTRACT

The kinetics of tropane alkaloid biosynthesis, particularly the isomerization of littorine into hyoscyamine, were studied by analyzing the kinetics of carbon-13 ((13)C) in metabolites of Datura innoxia hairy root cultures fed with labeled tropoyl moiety precursors. Both littorine and hyoscyamine were the major alkaloids accumulated, while scopolamine was never detected. Feeding root cultures with (RS)-phenyl[1,3-(13)C(2)]lactic acid led to (13)C spin-spin coupling detected on C-1' and C-2' of the hyoscyamine skeleton, which validated the intramolecular rearrangement of littorine into hyoscyamine. Label from phenyl[1-(13)C]alanine or (RS)-phenyl[1,3-(13)C(2)]lactic acid was incorporated at higher levels in littorine than in hyoscyamine. Initially, the apparent hyoscyamine biosynthesized rate (v(app)()hyo = 0.9 micromol (13)C.flask(-1).d(-1)) was lower than littorine formation (v(app)()litto = 1.8 micromol (13)C.flask(-1).d(-1)), suggesting that the isomerization reaction could be rate limiting. The results obtained for the kinetics of littorine biosynthesis were in agreement with the role of this compound as a direct precursor of hyoscyamine biosynthesis.


Subject(s)
Alkaloids/chemistry , Atropine Derivatives/chemistry , Datura stramonium/chemistry , Tropanes/chemistry , Atropine/chemistry , Carbon Isotopes/analysis , Chromatography, High Pressure Liquid , Culture Techniques , Kinetics , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Scopolamine/chemistry , Stereoisomerism , Time Factors
11.
Plant J ; 30(3): 273-87, 2002 May.
Article in English | MEDLINE | ID: mdl-12000676

ABSTRACT

A novel Arabidopsis thaliana mutant, named hoc, was found to have an high organogenic capacity for shoot regeneration. The HOC locus may be involved in cytokinin metabolism leading to cytokinin-overproduction. In vitro, hoc root explants develop many shoots in the absence of exogenous growth regulators. The mutant displays a bushy phenotype with supernumerary rosettes and with normal phyllotaxy, resulting from precocious axillary meristem development. Genetic and molecular analyses show that the high shoot regeneration and the bushy phenotype are controlled by a recessive single gene, located on chromosome I, next to the GAPB CAPS marker. The mapping data and allelism tests reveal that the hoc mutant is not allelic to other reported Arabidopsis growth-regulator mutants. In darkness the hoc mutant is de-etiolated, with a short hypocotyl, opened cotyledons and true leaves. Growth regulator assays reveal that the mutant accumulates cytokinins at about two- and sevenfold the cytokinin level of wild-type plants in its aerial parts and roots, respectively. Consequently, the elevated amounts of endogenous cytokinins in hoc plants are associated with high organogenic capacity and hence bushy phenotype. Thus hoc is the first cytokinin-overproducing Arabidopsis mutant capable of auto-regenerating shoots without exogenous growth regulators.


Subject(s)
Arabidopsis/genetics , Cytokinins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Chromosome Mapping , Cytokinins/pharmacology , Darkness , Dose-Response Relationship, Drug , Ethylenes/metabolism , Ethylenes/pharmacology , Gene Expression Regulation, Plant/drug effects , Gibberellins/metabolism , Gibberellins/pharmacology , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Light , Meristem/drug effects , Meristem/growth & development , Meristem/metabolism , Mutation , Phenotype , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL