Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Drugs ; 21(9)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37755074

ABSTRACT

The limited availability of treatments for many infectious diseases highlights the need for new treatments, particularly for viral infections. Natural compounds from seaweed are attracting increasing attention for the treatment of various viral diseases, and thousands of novel compounds have been isolated for the development of pharmaceutical products. Seaweed is a rich source of natural bioactive compounds, including polysaccharides. The discovery of algal polysaccharides with antiviral activity has significantly increased in the past few decades. Furthermore, unique polysaccharides isolated from seaweeds, such as carrageenan, alginates, fucoidans, galactans, laminarians, and ulvans, have been shown to act against viral infections. The antiviral mechanisms of these agents are based on their inhibition of DNA or RNA synthesis, viral entry, and viral replication. In this article, we review and provide an inclusive description of the antiviral activities of algal polysaccharides. Additionally, we discuss the challenges and opportunities for developing polysaccharide-based antiviral therapies, including issues related to drug delivery and formulation. Finally, this review highlights the need for further research for fully understanding the potential of seaweed polysaccharides as a source of antiviral agents and for developing effective treatments for viral diseases.

2.
Mar Drugs ; 19(8)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34436274

ABSTRACT

Ultraviolet (UV) B exposure is a prominent cause of skin aging and a contemporary subject of interest. The effects are progressing through the generation of reactive oxygen species (ROS) that alter cell signaling pathways related to inflammatory responses. The present study evaluates the protective effects of (7aR)-6-hydroxy-4,4,7a-trimethyl-6,7-dihydro-5H-1-benzofuran-2-one (HTT) isolated from the edible brown algae Sargassum horneri against UVB protective effects in human dermal fibroblasts (HDFs). HTT treatment dose-dependently suppressed intracellular ROS generation in HDFs with an IC50 of 62.43 ± 3.22 µM. HTT abated UVB-induced mitochondrial hyperpolarization and apoptotic body formation. Furthermore, UVB-induced activation of key nuclear factor (NF)-κB and mitogen-activated protein kinase signaling proteins were suppressed in HTT treated cells while downregulating pro-inflammatory cytokines (interleukin-1ß, 6, 8, 33 and tumor necrosis factor-α). Moreover, HTT treatment downregulated matrix metalloproteinase1, 2, 3, 8, 9 and 13 that was further confirmed by the inhibition of collagenase and elastase activity. The evidence implies that HTT delivers protective effects against premature skin aging caused by UVB exposure via suppressing inflammatory responses and degradation of extracellular matrix (ECM) components. Extensive research in this regard will raise perspectives for using HTT as an ingredient in UV protective ointments.


Subject(s)
Benzofurans/pharmacology , Fibroblasts/drug effects , Sargassum , Skin Aging , Aquatic Organisms , Humans , Inhibitory Concentration 50 , Oxidative Stress/drug effects , Phytotherapy , Skin/drug effects , Ultraviolet Rays
3.
Mar Drugs ; 18(12)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33256200

ABSTRACT

Sargassum horneri (S. horneri), an edible brown alga, has been proposed as a functional food with an improvement effect on abnormal skin immune responses. The present study investigates the anti-allergic effect of an ethanol extract from S. horneri (SHE) on immunoglobulin E (IgE)/bovine serum albumin (BSA)-mediated activation in bone marrow-derived cultured-mast cells (BMCMCs) and passive cutaneous anaphylaxis (PCA) reaction in mice. SHE markedly and dose-dependently suppressed the degranulation of BMCMCs by reducing the ß-hexosaminidase and histamine release without cytotoxicity. In addition, SHE significantly decreased the FcεRI expression on the surface of BMCMCs and its IgE binding. Moreover, SHE reduced the mRNA expression and the production of allergic cytokines; interleukin (IL)-1ß, IL-4, IL-5, IL-6, IL-10, IL-13; interferon (IFN)-γ and/or tumor necrosis factor (TNF)-α; and a chemokine, thymus and activation-regulated chemokine (TARC), by suppressing the activation of Src-family kinases and nuclear factor (NF)-κB signaling. In further study, the application of SHE reduced the PCA reaction in an IgE/BSA-induced type I allergic mice model. Taken together, we suggest that SHE has an anti-allergic effect in type I allergic responses.


Subject(s)
Anti-Allergic Agents/pharmacology , Cell Degranulation/drug effects , Functional Food , Histamine Release/drug effects , Hypersensitivity, Immediate/prevention & control , Mast Cells/drug effects , Passive Cutaneous Anaphylaxis/drug effects , Receptors, IgE/metabolism , Sargassum/metabolism , Skin/drug effects , Animal Feed , Animals , Anti-Allergic Agents/isolation & purification , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Dinitrophenols , Disease Models, Animal , Hypersensitivity, Immediate/immunology , Hypersensitivity, Immediate/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Serum Albumin, Bovine , Skin/immunology , Skin/metabolism
4.
Int J Biol Macromol ; 159: 773-781, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32442565

ABSTRACT

The escalation of fine particulate matter (PM) air pollution has recently become a global concern. Evidence is fast accumulating on PM exposure-related skin damage. The present study explored the therapeutic potentials of fucoidan purified from Sargassum natans against damaging effects of PM exposure on human HaCaT keratinocytes. Fucoidan (SNF7) was purified from S. natans by an enzyme-assisted extraction and purified by anion exchange chromatography. SNF7 (≈50 kDa) was identified as a fucoidan containing 70.97% fucose and 36.41 ± 0.59% of sulfate. Treatment of fine dust from Beijing, China (CFD) increased intracellular ROS levels in HaCaT cells triggering DNA damage and apoptosis. Treatment of SNF7 dose-dependently attenuated CFD-induced surge of intracellular ROS levels in keratinocytes by increasing antioxidant defense enzymes. Moreover, SNF7 chelated metal ions Pb2+, Ba2+, Sr2+, Cu2+, Fe2+, and Ca2+ coming from CFD. The results substantiated the potential therapeutic effects of SNF7 against CFD-induced oxidative stress. Further studies could promote SNF7's use as an active ingredient in cosmetics.


Subject(s)
Aerosols/adverse effects , Cytoprotection/drug effects , Keratinocytes/drug effects , Polysaccharides/pharmacology , Protective Agents/chemistry , Protective Agents/pharmacology , Sargassum/chemistry , Air Pollutants/adverse effects , Cell Cycle/drug effects , Cell Line , Chromatography, Ion Exchange , DNA Damage , Humans , Keratinocytes/metabolism , Keratinocytes/pathology , Magnetic Resonance Spectroscopy , Molecular Weight , Polysaccharides/chemistry , Reactive Oxygen Species/metabolism , Spectroscopy, Fourier Transform Infrared
5.
Mar Drugs ; 18(4)2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32276359

ABSTRACT

Fucoidans are biocompatible, heterogeneous, and fucose rich sulfated polysaccharides biosynthesized in brown algae, which are renowned for their broad-spectrum biofunctional properties. As a continuation of our preliminary screening studies, the present work was undertaken to extract polysaccharides from the edible brown algae Sargassum polycystum by a modified enzyme assisted extraction process using Celluclast, a food-grade cellulase, and to purify fucoidan by DEAE-cellulose anion exchange chromatography. The apoptotic and antiproliferative properties of the purified fucoidan (F5) were evaluated on HL-60 and MCF-7 cells. Structural features were characterized by FTIR and NMR analysis. F5 indicated profound antiproliferative effects on HL-60 leukemia and MCF-7 breast cancer cells with IC50 values of 84.63 ± 0.08 µg mL-1 and 93.62 ± 3.53 µg mL-1 respectively. Further, F5 treatment increased the apoptotic body formation, DNA damage, and accumulation of HL-60 and MCF-7 cells in the Sub-G1 phase of the cell cycle. The effects were found to proceed via the mitochondria-mediated apoptosis pathway. The Celluclast assisted extraction is a cost-efficient method of yielding fucoidan. With further studies in place, purified fucoidan of S. polycystum could be applied as functional ingredients in food and pharmaceuticals.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Mitochondria/drug effects , Polysaccharides/pharmacology , Sargassum/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage/drug effects , HL-60 Cells/drug effects , Humans , MCF-7 Cells/drug effects , Polysaccharides/isolation & purification
6.
Nutr Res Pract ; 11(1): 3-10, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28194259

ABSTRACT

BACKGROUND/OBJECTIVES: Sargassum horneri is an edible brown alga that grows in the subtidal zone as an annual species along the coasts of South Korea, China, and Japan. Recently, an extreme amount of S. horneri moved into the coasts of Jeju Island from the east coast of China, which made huge economic and environmental loss to the Jeju Island. Thus, utilization of this biomass becomes a big issue with the local authorities. Therefore, the present study was performed to evaluate the anti-inflammatory potential of crude polysaccharides (CPs) extracted from S. horneri China strain in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. MATERIALS/METHODS: CPs were precipitated from S. horneri digests prepared by enzyme assistant extraction using four food-grade enzymes (AMG, Celluclast, Viscozyme, and Alcalase). The production levels of nitric oxide (NO) and pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α and interleukin (IL)-1ß were measured by Griess assay and enzyme-linked immunosorbent assay, respectively. The levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), nuclear factor (NF)-κB, and mitogen-activated protein kinases (MAPKs) were measured by using western blot. The IR spectrums of the CPs were recorded using a fourier transform infrared spectroscopy (FT-IR) spectrometer. RESULTS: The polysaccharides from the Celluclast enzyme digest (CCP) showed the highest inhibition of NO production in LPS-stimulated RAW 264.7 cells (IC50 value: 95.7 µg/mL). Also, CCP dose-dependently down-regulated the protein expression levels of iNOS and COX-2 as well as the production of inflammatory cytokines, including TNF-α and IL-1ß, compared to the only LPS-treated cells. In addition, CCP inhibited the activation of NF-κB p50 and p65 and the phosphorylation of MAPKs, including p38 and extracellular signal-regulated kinase, in LPS-stimulated RAW 264.7 cells. Furthermore, FT-IR analysis showed that the FT-IR spectrum of CCP is similar to that of commercial fucoidan. CONCLUSIONS: Our results suggest that CCP has anti-inflammatory activities and is a potential candidate for the formulation of a functional food ingredient or/and drug to treat inflammatory diseases.

7.
J Photochem Photobiol B ; 162: 100-105, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27362368

ABSTRACT

Currently, natural ingredients are becoming more attractive for the industries such as functional food, nutraceuticals, cosmeceutical and pharmaceutical industries as people starting to believe naturally occurring compounds are safer to humans than artificial compounds. Seaweeds are one of the most interesting organisms found in oceans around the earth, which are carrying great ecological importance and contribute to increase the biodiversity of ecosystems where they were originated and habitat. Within last few decades, discovery of secondary metabolites with biological activities from seaweeds has been significantly increased. Further, the unique secondary metabolites isolated from seaweeds including polysaccharides, carotenoids and polyphenols possess range of bioactive properties that make them potential ingredient for many industrial applications. Among those groups of compounds phlorotannins isolated from brown seaweeds have shown interesting bioactive properties including anti-cancer, anti-inflammation, anti-oxidant, anti-allergic, anti-wrinkling and hair growth promotion properties. Moreover, these properties associated with phlorotannins make them an ideal compounds to use as a functional ingredient in cosmeceutical products. Up to now no report has been reviewed about discuss properties of phlorotannins related to the cosmeceutical application. In the present review primary attention is given to the collect scientific data published about bioactive properties of brown algal phlorotannins related to the cosmeceutical industry.


Subject(s)
Seaweed/chemistry , Tannins/isolation & purification , Hair/growth & development , Humans , Skin Aging/drug effects , Tannins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...