Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(15): 6592-6600, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38375683

ABSTRACT

The magnetic structure of K2Co3(MoO4)3(OH)2 is studied in detail. The material has a half-sawtooth one-dimensional (1-D) structure containing two unique Co2+ ions, one in the chain backbone and one on the apex of the sawtooth creating a series of isosceles triangles along the b-axis. These triangles can be a source of magnetic frustration. The ability to grow large single crystals enables detailed magnetic measurements with the crystals oriented in a magnetic field along the respective axes. It has a Curie-Weiss temperature θCW of 5.3(2) K with an effective magnetic moment of 4.8(3)µB/Co. The material is highly anisotropic with a sharp antiferromagnetic ordering transition at 7 K with a metamagnetic transition at 2 kOe. Neutron diffraction was used to determine the magnetic structure and revealed a magnetic structure with canted spins along the backbone of the chain while spins along the sawtooth caps maintained a colinear orientation, arranging antiferromagnetically relative to the backbone spins. The parallel chains arrange antiferromagnetically relative to each other along the c-axis and ferromagnetically along the a-axis.

2.
Nanomaterials (Basel) ; 11(4)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923517

ABSTRACT

The low-temperature scanning tunneling microscope and spectroscopy (STM/STS) are used to visualize superconducting states in the cleaved single crystal of 9% praseodymium-doped CaFe2As2 (Pr-Ca122) with Tc ≈ 30 K. The spectroscopy shows strong spatial variations in the density of states (DOS), and the superconducting map constructed from spectroscopy discloses a localized superconducting phase, as small as a single unit cell. The comparison of the spectra taken at 4.2 K and 22 K (below vs. close to the bulk superconducting transition temperature) from the exact same area confirms the superconducting behavior. Nanoscale superconducting states have been found near Pr dopants, which can be identified using dI/dV conductance maps at +300 mV. There is no correlation of the local superconductivity to the surface reconstruction domain and surface defects, which reflects its intrinsic bulk behavior. We, therefore, suggest that the local strain of Pr dopants is competing with defects induced local magnetic moments; this competition is responsible for the local superconducting states observed in this Fe-based filamentary superconductor.

3.
Front Chem ; 8: 127, 2020.
Article in English | MEDLINE | ID: mdl-32175311

ABSTRACT

The triangular lattice compound TlYbS2 was prepared as large single crystals via a molten flux growth technique using sodium chloride. Anisotropic magnetic susceptibility measurements down to 0.4 K indicate a complete absence of long-range magnetic order. Despite this lack of long-range order, short-range antiferromagnetic interactions are evidenced through broad transitions, suggesting frustrated behavior. Variable magnetic field measurements reveal metamagnetic behavior at temperatures ≤2 K. Complex low temperature field-tunable magnetic behavior, in addition to no observable long-range order down to 0.4 K, suggest that TlYbS2 is a frustrated magnet and a possible quantum spin liquid candidate.

4.
Dalton Trans ; 49(14): 4323-4335, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32162631

ABSTRACT

Two new alkali vanadate carbonates with divalent transition metals have been synthesized as large single crystals via a high-temperature (600 °C) hydrothermal technique. Compound I, Rb2Mn3(VO4)2CO3, crystallizes in the trigonal crystal system in the space group P3[combining macron]1c, and compound II, K2Co3(VO4)2CO3, crystallizes in the hexagonal space group P63/m. Both structures contain honeycomb layers and triangular lattices made from edge-sharing MO6 octahedra and MO5 trigonal bipyramids, respectively. The honeycomb and triangular layers are connected along the c-axis through tetrahedral [VO4] groups. The MO5 units are connected with each other by carbonate groups in the ab-plane by forming a triangular magnetic lattice. The difference in space groups between I and II was also investigated with Density Functional Theory (DFT) calculations. Single crystal magnetic characterization of I indicates three magnetic transitions at 77 K, 2.3 K, and 1.5 K. The corresponding magnetic structures for each magnetic transition of I were determined using single crystal neutron diffraction. At 77 K the compound orders in the MnO6-honeycomb layer in a Néel-type antiferromagnetic orientation while the MnO5 triangular lattice ordered below 2.3 K in a colinear 'up-up-down' fashion, followed by a planar 'Y' type magnetic structure. K2Co3(VO4)2CO3 (II) exhibits a canted antiferromagnetic ordering below TN = 8 K. The Curie-Weiss fit (200-350 K) gives a Curie-Weiss temperature of -42 K suggesting a dominant antiferromagnetic coupling in the Co2+ magnetic sublattices.

5.
Inorg Chem ; 59(2): 1029-1037, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31845582

ABSTRACT

A new member of the descloizite family, a cobalt vanadate, SrCo(VO4)(OH), has been synthesized as large single crystals using high-temperature and high-pressure hydrothermal methods. SrCo(VO4)(OH) crystallizes in the orthorhombic crystal system in space group P212121 with the following unit cell parameters: a = 6.0157(2) Å, b = 7.645(2) Å, c = 9.291(3) Å, V = 427.29(2) Å3, and Z = 4. It contains one-dimensional Co-O-Co chains of edge-sharing CoO6 octahedra along the a-axis connected to each other via VO4 tetrahedra along the b-axis forming a three-dimensional structure. The magnetic susceptibility of SrCo(VO4)(OH) indicates an antiferromagnetic transition at 10 K as well as unusually large spin orbit coupling. Single-crystal magnetic measurements in all three main crystallographic directions displayed a significant anisotropy in both temperature- and field-dependent data. Single-crystal neutron diffraction at 4 K was used to characterize the magnetically ordered state. The Co2+ magnetic spins are arranged in a staggered configuration along the chain direction, with a canting angle that follows the tipping of the CoO6 octahedra. The net magnetization along the chain direction, resulting in ferromagnetic coupling of the a-axis spin components in each chain, is compensated by an antiferromagnetic interaction between nearest neighbor chains. A metamagnetic transition appears in the isothermal magnetization data at 2 K along the chain direction, which seems to correspond to a co-alignment of the spin directions of the nearest neighbor chain. We propose a phenomenological spin Hamiltonian that describes the canted spin configuration of the ground state and the metamagnetic transition in SrCo(VO4)(OH).

6.
Dalton Trans ; 48(22): 7704-7713, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31065652

ABSTRACT

Reactions are reported of early rare earth oxides, RE2O3 (RE = La, Pr, Nd) with Ta2O5 under hydrothermal conditions (650 °C, 1.5 kbar) in concentrated aqueous hydroxide (20-30 M KOH) as a mineralizer. Under various stoichiometries several members of two new structure types were isolated, Ln2TaO5(OH) (Ln = La, Pr) and Ln3Ta2O9(OH) (Ln = Pr, Nd). The analogous niobate La2NbO5(OH) was also obtained. Both structure types were characterized by single crystal X-ray diffraction and contain pentavalent tantalatum oxide octahedra and complex rare earth oxide frameworks. The Ln2TaO5(OH) structure type contains Ln-O8 and Ln-O9 building blocks and TaO6 octahedra in a 3-D framework. It contains a 3-D rare earth oxide framework formed by from zig-zag chains of rare earth oxides linking sheets of rare earth oxides. The tantalates form edge-shared Ta2O10 dimers occupying gaps in the rare earth oxide frameworks. The structure of Ln3Ta2O9(OH) contains two types of 2-D rare earth oxide slabs built of seven and eight coordinate rare earth metals. The tantalate units form 2-D slabs through a multiple corner-sharing scheme of TaO6 octahedra. The Ln3Ta2O9(OH) structure type has an interesting close structural relationship to the previously reported rare earth titanate La5Ti4O15(OH), which is discussed. The presence of hydroxide in the lattice is confirmed by IR spectroscopy and the H atom locations are assigned unambiguously using bond valence sums.

7.
Inorg Chem ; 58(4): 2813-2821, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30730713

ABSTRACT

The magnetic properties are reported for three members of the glaserite series of compounds, Na2BaM(VO4)2, M = Mn, Mn0.6Co0.4, and Co. Large single crystals are grown using a high-temperature hydrothermal synthesis method. This structure type exhibits a triangular magnetic lattice in which M2+O6 octahedra are interconnected with nonmagnetic (VO4)3- groups. All the structures crystallize at room temperature with rigid trigonal symmetry (space group P3̅ m1); however, at lower temperatures both Na2BaMn(VO4)2 and Na2BaMn0.6Co0.4(VO4)2 undergo a structural transition to lower symmetry (monoclinic, C2/ c). The bulk magnetic measurements indicate that Mn- and Co-structures are antiferromagnetic and ferromagnetic, respectively. Na2BaMn0.6Co0.4(VO4)2 does not show any long-range ordering down to 0.5 K, although a broad heat capacity anomaly near 1.2 K suggests short-range magnetic order or freezing into a spin-glass-like state related to the chemical disorder and resulting competing magnetic interactions. The magnetic structures of Na2BaMn(VO4)2 and Na2BaCo(VO4)2 were determined using neutron powder diffraction. At zero magnetic field, Na2BaMn(VO4)2 possesses an antiferromagnetic structure with the moments ordered in a Néel-type arrangement and aligned along the C4 axis of the octahedra. Under applied magnetic field at 0.3 K, the evolution of the magnetic structure toward a fully polarized state is observed. Na2BaCo(VO4)2 represents a ferromagnetic (FM) magnetic structure with Co moments aligned parallel to the c-axis direction. The relationships between these structures and magnetic properties are discussed.

8.
Inorg Chem ; 57(20): 12456-12460, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30253103

ABSTRACT

Large single crystals of Yb2Ge2O7 in the cubic Fd3̅ m space group, are synthesized and characterized from a high-temperature hydrothermal method (650°C/200 MPa in 1 M KF). The cubic phase displays spin frustration and possibly nonclassical quantum-spin behavior at low temperature. This is the first report of single crystals of this important phase of size and quality suitable for single-crystal neutron diffraction.

9.
Dalton Trans ; 47(19): 6754-6762, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29717317

ABSTRACT

Reactions of rare-earth oxides with TiO2 were performed in high temperature (650-700 °C) hydrothermal fluids. Two different mineralizer fluids were examined, 20 M KOH and 30 M CsF, and their respective products analyzed. When concentrated KOH fluids were used, single crystals of a variety of new OH- containing species were isolated and structurally characterized: RE5Ti4O15(OH) (RE = La, Er) I, Sm3TiO5(OH)3II and RE5Ti2O11(OH) (RE = Tm-Lu) III. La5Ti4O15(OH) I crystallizes in the orthorhombic space group Pnnm with unit cell dimensions of a = 30.5152(12) Å, b = 5.5832(2) Å, c = 7.7590(3) Å and V = 1321.92(9) Å3, Z = 4. Sm3TiO5(OH)3II crystallizes in the monoclinic space group P21/m with unit cell parameters of a = 5.6066(2) Å, b = 10.4622(4) Å, c = 6.1258(2) Å and ß = 104.7390(10)°, V = 347.50(2) Å3, Z = 2. Lu5Ti2O11(OH) III crystallizes in the monoclinic space group C2/m with unit cell dimensions of a = 12.1252(9) Å, b = 5.8243(4) Å, c = 7.0407(5) Å, ß = 106.939(3)° and V = 475.65(6) Å3, Z = 2. When concentrated fluoride solutions are used, mostly RE2Ti2O7 type compounds were isolated in either cubic or monoclinic phases. In the case of cerium, Ce2Ti4O11IV was isolated that crystallizes in the monoclinic space group C2/c with unit cell parameters of a = 13.6875(7) Å, b = 5.0955(3) Å, c = 12.8592(7) Å, ß = 108.964(2)° and V = 848.18(8) Å3, Z = 4. The synthesis, structural characterization, and supporting characterization are reported for all compounds. The work highlights the complementary nature of hydroxide and fluoride fluids in studying the reactivity of refractory oxides.

10.
Inorg Chem ; 56(24): 14842-14849, 2017 Dec 18.
Article in English | MEDLINE | ID: mdl-29215870

ABSTRACT

The structural and magnetic properties of a glaserite-type Na2BaFe(VO4)2 compound, featuring a triangular magnetic lattice of Fe2+ (S = 2), are reported. Temperature dependent X-ray single crystal studies indicate that at room temperature the system adopts a trigonal P3̅m1 structure and undergoes a structural phase transition to a C2/c monoclinic phase slightly below room temperature (Ts = 288 K). This structural transition involves a tilting of Fe-O-V bond angles and strongly influences the magnetic correlation within the Fe triangular lattice. The magnetic susceptibility measurements reveal a ferromagnetic transition near 7 K. Single crystal neutron diffraction confirms the structural distortion and the ferromagnetic spin ordering in Na2BaFe(VO4)2. The magnetic structure of the ordered state is modeled in the magnetic space group C2'/c' that implies a ferromagnetic order of the a and c moment components and antiferromagnetic arrangement for the b components. Overall, the Fe magnetic moments form ferromagnetic layers that are stacked along the c-axis, where the spins point along one of the (111) facets of the FeO6 octahedron.

11.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 73(Pt 5): 907-915, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28980996

ABSTRACT

Structural variations across a series of barium rare earth (RE) tetrasilicates are studied. Two different formulas are observed, namely those of a new cyclo-silicate fluoride, BaRE2Si4O12F2 (RE = Er3+-Lu3+) and new compounds in the Ba2RE2Si4O13 (RE = La3+-Ho3+) family, covering the whole range of ionic radii for the rare earth ions. The Ba2RE2Si4O13 series is further subdivided into two polymorphs, also showing a dependence on rare earth ionic radius (space group P{\overline 1} for La3+-Nd3+, and space group C2/c for Sm3+-Ho3+). Two of the structure types identified are based on dinuclear rare earth units that differ in their crystal chemistries, particularly with respect to the role of fluorine as a structural director. The broad study of rare earth ions provides greater insight into understanding structural variations within silicate frameworks and the nature of f-block incorporation in oxyanion frameworks. The single crystals are grown from high-temperature (ca 953 K) hydrothermal fluids, demonstrating the versatility of the technique to access new phases containing recalcitrant rare earth oxides, enabling the study of structural trends.

12.
Inorg Chem ; 56(11): 6044-6047, 2017 Jun 05.
Article in English | MEDLINE | ID: mdl-28537716

ABSTRACT

Two terbium germanates have been synthesized via high-temperature and high-pressure hydrothermal synthesis with 20 M KOH as a mineralizer using Tb4O7 as a starting material. Tb13(GeO4)6O7(OH) crystallizes in trigonal space group R3̅, is built up of isolated GeO4 units, and contains a complex arrangement of terbium oxide polyhedra. K2TbGe2O7 is a terbium(4+) pyrogermanate that is isostructural with K2ZrGe2O7 and displays a rare stable Tb4+ oxidation state in the solid state.

13.
Inorg Chem ; 55(24): 12512-12515, 2016 Dec 19.
Article in English | MEDLINE | ID: mdl-27989183

ABSTRACT

Manganese vanadate fluorides were synthesized using high-temperature hydrothermal techniques with BaF2 as a mineralizer. Ba3Mn2(V2O7)2F2 crystallizes in space group C2/c and consists of dimers built from edge-sharing MnO4F2 trigonal prisms with linking V2O7 groups. Ba7Mn8O2(VO4)2F23 crystallizes in space group Cmmm, with a manganese oxyfluoride network built from edge- and corner-sharing Mn2+/3+(O,F)6 octahedra. These octahedra form alternating Mn2+ and Mn2+/3+ layers separated by VO4 tetrahedra. This latter compound exhibits a canted antiferromagnetic order below TN = 25 K.

14.
Acta Crystallogr E Crystallogr Commun ; 72(Pt 9): 1315-1320, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27920925

ABSTRACT

In an attempt to search for mixed alkaline-earth and transition metal pyroborates, the title compound, barium manganese(II) pyroborate, has been synthesized by employing a flux method. The structure of BaMnB2O5 is composed of MnO5 square pyramids that form Mn2O8 dimers by edge-sharing and of pyroborate units ([B2O5]4-) that are composed of two corner-sharing trigonal-planar BO3 units. These building blocks share corners to form ∞2[MnB2O5]2- layers extending parallel to (100). The Ba2+ cations reside in the gap between two manganese pyroborate slabs with a coordination number of nine. The title compound forms an inter-esting spiral framework propagating along the 21 screw axis. The structure is characterized by two alternating layers, which is relatively rare among known transition-metal-based pyroborate compounds.

15.
Inorg Chem ; 55(18): 9240-9, 2016 Sep 19.
Article in English | MEDLINE | ID: mdl-27564229

ABSTRACT

New complex manganese vanadate materials were synthesized as high-quality single crystals in multi-millimeter lengths using a high-temperature, high-pressure hydrothermal method. One compound, Mn5(VO4)2(OH)4, was grown from Mn2O3 and V2O5 in 3 M CsOH at 580 °C and 1.5 kbar. Changing the mineralizer to 1 M CsOH/3MCsCl leads to the formation of another product, Mn6O(VO4)2(OH). Both compounds were structurally characterized by single-crystal X-ray diffraction (Mn5(VO4)2(OH)4: C2/m, Z = 2, a = 9.6568(9) Å, b = 9.5627(9) Å, c = 5.4139(6) Å, ß = 98.529(8)°; Mn6O(VO4)2(OH): P21/m, Z = 2, a = 8.9363(12) Å, b = 6.4678(8) Å, c = 10.4478(13) Å, ß = 99.798(3)°), revealing interesting low-dimensional transition-metal features. Mn5(VO4)2(OH)4 possesses complex honeycomb-type Mn-O layers, built from edge-sharing [MnO6] octahedra in the bc plane, with bridging vanadate groups connecting these layers along the a-axis. Mn6O(VO4)2(OH) presents a more complicated structure with both octahedral [MnO6] and trigonal bipyramidal [MnO5] units. A different pattern of planar honeycomb sheets are formed by edge-shared [MnO6] octahedra, and these sublattices are connected through edge-shared dimers of [MnO5] trigonal bipyramids to form corrugated sheets. Vanadate groups again condense the sheets into a three-dimensional framework. Infrared and Raman spectroscopies indicated the presence of OH groups and displayed characteristic Raman scattering due to vanadate groups. Temperature-dependent magnetic studies indicated Curie-Weiss behavior above 100 K with significant anti-ferromagnetic coupling for both compounds, with further complex magnetic behavior at lower temperatures. The data indicate canted anti-ferromagnetic order below 57 K in Mn5(VO4)2(OH)4 and below 45 K in Mn6O(VO4)2(OH). Members of another class of compounds, K2M3(VO4)2(OH)2 (M = Mn, Co), also containing a honeycomb-type sublattice, were also synthesized to allow a comparison of the structural features across all three structure types and to demonstrate extension to other transition metals.

16.
Acta Crystallogr E Crystallogr Commun ; 72(Pt 4): 552-5, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27375887

ABSTRACT

The asymmetric unit of the title compound, 4C4H4FN3O·C3H6N6, comprises of two independent 5-fluoro-cytosine (5FC) mol-ecules (A and B) and one half-mol-ecule of melamine (M). The other half of the melamine mol-ecule is generated by a twofold axis. 5FC mol-ecules A and B are linked through two different homosynthons [R 2 (2)(8) ring motif]; one is formed via a pair of N-H⋯O hydrogen bonds and the second via a pair of N-H⋯N hydrogen bonds. In addition to this pairing, the O atoms of 5FC mol-ecules A and B inter-act with the N2 amino group on both sides of the melamine mol-ecule, forming a DDAA array of quadruple hydrogen bonds and generating a supra-molecular pattern. The 5FC (mol-ecules A and B) and two melamine mol-ecules inter-act via N-H⋯O, N-H⋯N and N-H⋯O, N-H⋯N, C-H⋯F hydrogen bonds forming R 6 (6)(24) and R 4 (4)(15) ring motifs. The crystal structure is further strengthened by C-H⋯F, C-F⋯π and π-π stacking inter-actions.

17.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 71(Pt 6): 768-76, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26634734

ABSTRACT

The structural variations of several alkali metal rare earth fluoride single crystals are summarized. Two different stoichiometric formulations are considered, namely those of ARE2F7 and ARE3F10 (A = K, Rb, Cs; RE = Y, La-Lu), over a wide range of ionic radii of both the alkali and rare earth (RE) ions. Previously reported and several new single-crystal structures are considered. The new single crystals are grown using hydrothermal methods and the structures are compared with literature reports of structures grown from both melts and hydrothermal fluids. The data reported here are combined with the literature data to gain a greater understanding of structural subtleties surrounding these systems. The work underscores the importance of the size of the cations to the observed structure type and also introduces synthetic technique as a contributor to the same. New insights based on single-crystal structure analysis in the work introduce a new disordered structure type in the case of ARE2F7, and examine the trends and boundaries of the ARE3F10 stoichiometry. Such fundamental structural information is useful in understanding the potential applications of these compounds as optical materials.

18.
Inorg Chem ; 54(14): 7014-20, 2015 Jul 20.
Article in English | MEDLINE | ID: mdl-26154989

ABSTRACT

A new series of transition metal vanadates, namely, Ba2M(VO4)2(OH) (M = V(3+), Mn(3+), and Fe(3+)), was synthesized as large single crystals hydrothermally in 5 M NaOH solution at 580 °C and 1 kbar. This new series of compounds is structurally reminiscent of the brackebuschite mineral type. The structure of Ba2V(VO4)2(OH) is monoclinic in space group P21/m, a = 7.8783(2) Å, b = 6.1369(1) Å, c = 9.1836(2) Å, ß = 113.07(3)°, V = 408.51(2) Å(3). The other structures are similar and consist of one-dimensional trans edge-shared distorted octahedral chains running along the b-axis. The vanadate groups bridge across edges of their tetrahedra. Structural analysis of the Ba2Mn(VO4)2(OH) analogue yielded a new understanding of the Jahn-Teller effect in this structure type. Raman and infrared spectra were investigated to observe the fundamental vanadate and hydroxide vibrational modes. Single-crystal temperature-dependent magnetic studies on Ba2V(VO4)2(OH) reveal a broad feature over a wide temperature range with maximum at ∼100 K indicating that an energy gap could exist between the antiferromagnetic singlet ground state and excited triplet states, making it potentially of interest for quantum magnetism studies.

19.
Small ; 10(16): 3364-70, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-24753264

ABSTRACT

Multifunctional nanoparticles are synthesized for both pH-triggered drug release and imaging with radioluminescence, upconversion luminescent, and magnetic resonance imaging (MRI). The particles have a yolk-in-shell morphology, with a radioluminescent core, an upconverting shell, and a hollow region between the core and shell for loading drugs. They are synthesized by controlled encapsulation of a radioluminescent nanophosphor yolk in a silica shell, partial etching of the yolk in acid, and encapsulation of the silica with an upconverting luminescent shell. Metroxantrone, a chemotherapy drug, was loaded into the hollow space between X-ray phosphor yolk and up-conversion phosphor shell through pores in the shell. To encapsulate the drug and control the release rate, the nanoparticles are coated with pH-responsive biocompatible polyelectrolyte layers of charged hyaluronic acid sodium salt and chitosan. The nanophosphors display bright luminescence under X-ray, blue light (480 nm), and near infrared light (980 nm). They also served as T1 and T2 MRI contrast agents with relaxivities of 3.5 mM(-1) s(-1) (r1 ) and 64 mM(-1) s(-1) (r2 ). These multifunctional nanocapsules have applications in controlled drug delivery and multimodal imaging.


Subject(s)
Drug Liberation , Hydrogen-Ion Concentration , Nanoparticles , Animals , Chickens , Drug Carriers , Humans , MCF-7 Cells , Magnetic Resonance Imaging , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...