Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
Nat Commun ; 15(1): 4355, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778023

ABSTRACT

Phages are increasingly considered promising alternatives to target drug-resistant bacterial pathogens. However, their often-narrow host range can make it challenging to find matching phages against bacteria of interest. Current computational tools do not accurately predict interactions at the strain level in a way that is relevant and properly evaluated for practical use. We present PhageHostLearn, a machine learning system that predicts strain-level interactions between receptor-binding proteins and bacterial receptors for Klebsiella phage-bacteria pairs. We evaluate this system both in silico and in the laboratory, in the clinically relevant setting of finding matching phages against bacterial strains. PhageHostLearn reaches a cross-validated ROC AUC of up to 81.8% in silico and maintains this performance in laboratory validation. Our approach provides a framework for developing and evaluating phage-host prediction methods that are useful in practice, which we believe to be a meaningful contribution to the machine-learning-guided development of phage therapeutics and diagnostics.


Subject(s)
Bacteriophages , Host Specificity , Klebsiella , Machine Learning , Bacteriophages/physiology , Klebsiella/virology , Computer Simulation
2.
Virus Evol ; 10(1): veae032, 2024.
Article in English | MEDLINE | ID: mdl-38779130

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can infect various human tissues and cell types, principally via interaction with its cognate receptor angiotensin-converting enzyme-2 (ACE2). However, how the virus evolves in different cellular environments is poorly understood. Here, we used experimental evolution to study the adaptation of the SARS-CoV-2 spike to four human cell lines expressing different levels of key entry factors. After twenty passages of a spike-expressing recombinant vesicular stomatitis virus (VSV), cell-type-specific phenotypic changes were observed and sequencing allowed the identification of sixteen adaptive spike mutations. We used VSV pseudotyping to measure the entry efficiency, ACE2 affinity, spike processing, TMPRSS2 usage, and entry pathway usage of all the mutants, alone or in combination. The fusogenicity of the mutant spikes was assessed with a cell-cell fusion assay. Finally, mutant recombinant VSVs were used to measure the fitness advantage associated with selected mutations. We found that the effects of these mutations varied across cell types, both in terms of viral entry and replicative fitness. Interestingly, two spike mutations (L48S and A372T) that emerged in cells expressing low ACE2 levels increased receptor affinity, syncytia induction, and entry efficiency under low-ACE2 conditions. Our results demonstrate specific adaptation of the SARS-CoV-2 spike to different cell types and have implications for understanding SARS-CoV-2 tissue tropism and evolution.

3.
mBio ; 15(4): e0336023, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38411986

ABSTRACT

SARS-CoV-2 infects both the upper and lower respiratory tracts, which are characterized by different temperatures (33°C and 37°C, respectively). In addition, fever is a common COVID-19 symptom. SARS-CoV-2 has been shown to replicate more efficiently at low temperatures, but the effect of temperature on different viral proteins remains poorly understood. Here, we investigate how temperature affects the SARS-CoV-2 spike function and evolution. We first observed that increasing temperature from 33°C to 37°C or 39°C increased spike-mediated cell-cell fusion. We then experimentally evolved a recombinant vesicular stomatitis virus expressing the SARS-CoV-2 spike at these different temperatures. We found that spike-mediated cell-cell fusion was maintained during evolution at 39°C but was lost in a high proportion of viruses that evolved at 33°C or 37°C. Consistently, sequencing of the spikes evolved at 33°C or 37°C revealed the accumulation of mutations around the furin cleavage site, a region that determines cell-cell fusion, whereas this did not occur in spikes evolved at 39°C. Finally, using site-directed mutagenesis, we found that disruption of the furin cleavage site had a temperature-dependent effect on spike-induced cell-cell fusion and viral fitness. Our results suggest that variations in body temperature may affect the activity and diversification of the SARS-CoV-2 spike. IMPORTANCE: When it infects humans, SARS-CoV-2 is exposed to different temperatures (e.g., replication site and fever). Temperature has been shown to strongly impact SARS-CoV-2 replication, but how it affects the activity and evolution of the spike protein remains poorly understood. Here, we first show that high temperatures increase the SARS-CoV-2 spike fusogenicity. Then, we demonstrate that the evolution of the spike activity and variants depends on temperature. Finally, we show that the functional effect of specific spike mutations is temperature-dependent. Overall, our results suggest that temperature may be a factor influencing the activity and adaptation of the SARS-CoV-2 spike in vivo, which will help understanding viral tropism, pathogenesis, and evolution.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Temperature , SARS-CoV-2/genetics , Furin , Cold Temperature , Spike Glycoprotein, Coronavirus/genetics
4.
PLoS Pathog ; 20(2): e1012021, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38377111

ABSTRACT

The interaction of viral surface components with cellular receptors and other entry factors determines key features of viral infection such as host range, tropism and virulence. Despite intensive research, our understanding of these interactions remains limited. Here, we report a systematic analysis of published work on mammalian virus receptors and attachment factors. We build a dataset twice the size of those available to date and specify the role of each factor in virus entry. We identify cellular proteins that are preferentially used as virus receptors, which tend to be plasma membrane proteins with a high propensity to interact with other proteins. Using machine learning, we assign cell surface proteins a score that predicts their ability to function as virus receptors. Our results also reveal common patterns of receptor usage among viruses and suggest that enveloped viruses tend to use a broader repertoire of alternative receptors than non-enveloped viruses, a feature that might confer them with higher interspecies transmissibility.


Subject(s)
Receptors, Cell Surface , Viruses , Animals , Receptors, Virus , Membrane Proteins , Machine Learning , Mammals
5.
Methods Mol Biol ; 2732: 155-164, 2024.
Article in English | MEDLINE | ID: mdl-38060124

ABSTRACT

Metagenomics is vastly improving our ability to discover new viruses, as well as their possible associations with disease. However, metagenomics has also changed our understanding of viruses in general. This is because we can find viruses in healthy hosts in the absence of disease, which changes the perspective of viruses as mere pathogens and offers a new perspective in which viruses function as important components of ecosystems. In concrete, human blood metagenomics has revealed the presence of different types of viruses in apparently healthy subjects. These viruses are human anelloviruses and, to a lower extent, human pegiviruses. Viral metagenomics' major challenge is the correct isolation of the viral nucleic acids from a specific sample. For the protocol to be successful, all steps must be carefully chosen, in particular those that optimize the recovery of viral nucleic acids. Here, we present a procedure that allows the recovery of both DNA and RNA viruses from plasma samples.


Subject(s)
DNA, Viral , Viruses , Humans , DNA, Viral/genetics , Ecosystem , Viruses/genetics , RNA, Viral/genetics , Metagenomics/methods , Plasma , Genome, Viral , High-Throughput Nucleotide Sequencing/methods
6.
Microbiol Spectr ; 11(6): e0429822, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37882584

ABSTRACT

IMPORTANCE: The emergence of multi-drug resistant bacteria is a global health problem. Among them, Klebsiella pneumoniae is considered a high-priority pathogen, making it necessary to develop new therapeutic tools to reduce the bacterial burden in an effective and sustainable manner. Phages, bacterial viruses, are very promising tools. However, phages are highy specific, rendering large-scale therapeutics costly to implement. This is especially certain in Klebsiella, a capsular bacterium in which phages have been shown to be capsular type dependent, infecting one or a few capsular types through specific enzymes called depolymerases. In this study, we have isolated and characterized novel phages with lytic ability against bacteria from a wide variety of capsular types, representing the Klebsiella phages with the widest range of infection described. Remarkably, these broad-range phages showed capsule dependency, despite the absence of depolymerases in their genomes, implying that infectivity could be governed by alternative mechanisms yet to be uncovered.


Subject(s)
Bacteriophages , Klebsiella Infections , Humans , Klebsiella , Klebsiella pneumoniae , Klebsiella Infections/microbiology
7.
Viruses ; 15(5)2023 05 19.
Article in English | MEDLINE | ID: mdl-37243281

ABSTRACT

The environmental impact of uncultured phages is shaped by their preferred life cycle (lytic or lysogenic). However, our ability to predict it is very limited. We aimed to discriminate between lytic and lysogenic phages by comparing the similarity of their genomic signatures to those of their hosts, reflecting their co-evolution. We tested two approaches: (1) similarities of tetramer relative frequencies, (2) alignment-free comparisons based on exact k = 14 oligonucleotide matches. First, we explored 5126 reference bacterial host strains and 284 associated phages and found an approximate threshold for distinguishing lysogenic and lytic phages using both oligonucleotide-based methods. The analysis of 6482 plasmids revealed the potential for horizontal gene transfer between different host genera and, in some cases, distant bacterial taxa. Subsequently, we experimentally analyzed combinations of 138 Klebsiella pneumoniae strains and their 41 phages and found that the phages with the largest number of interactions with these strains in the laboratory had the shortest genomic distances to K. pneumoniae. We then applied our methods to 24 single-cells from a hot spring biofilm containing 41 uncultured phage-host pairs, and the results were compatible with the lysogenic life cycle of phages detected in this environment. In conclusion, oligonucleotide-based genome analysis methods can be used for predictions of (1) life cycles of environmental phages, (2) phages with the broadest host range in culture collections, and (3) potential horizontal gene transfer by plasmids.


Subject(s)
Bacteriophages , Bacteriophages/genetics , Lysogeny , Genomics , Genome, Viral , Bacteria/genetics , Oligonucleotides
8.
Microbiol Spectr ; 11(3): e0492822, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37199659

ABSTRACT

Anelloviruses represent the major and most diverse component of the healthy human virome, referred to as the anellome. In this study, we determined the anellome of 50 blood donors, forming two sex- and age-matched groups. Anelloviruses were detected in 86% of the donors. The number of detected anelloviruses increased with age and was approximately twice as high in men as in women. A total of 349 complete or nearly complete genomes were classified as belonging to torque teno virus (TTV), torque teno mini virus (TTMV), and torque teno midi virus (TTMDV) anellovirus genera (197, 88, and 64 sequences, respectively). Most donors had intergenus (69.8%) or intragenus (72.1%) coinfections. Despite the limited number of sequences, intradonor recombination analysis showed 6 intragenus recombination events in ORF1. As thousands of anellovirus sequences have been described recently, we finally analyzed the global diversity of human anelloviruses. Species richness and diversity were close to saturation in each anellovirus genus. Recombination was found to be the main factor promoting diversity, although its effect was significantly lower in TTV than in TTMV and TTMDV. Overall, our results suggest that differences in diversity between genera may be caused by variations in the relative contribution of recombination. IMPORTANCE Anelloviruses are the most common human infectious viruses and are considered essentially harmless. Compared to other human viruses, they are characterized by enormous diversity, and recombination is suggested to play an important role in their diversification and evolution. Here, by analyzing the composition of the plasma anellome of 50 blood donors, we find that recombination is also a determinant of viral evolution at the intradonor level. On a larger scale, analysis of anellovirus sequences currently available in databases shows that their diversity is close to saturation and differs among the three human anellovirus genera and that recombination is the main factor explaining this intergenus variability. Global characterization of anellovirus diversity could provide clues about possible associations between certain virus variants and pathologies, as well as facilitate the implementation of unbiased PCR-based detection protocols, which may be relevant for using anelloviruses as endogenous markers of immune status.


Subject(s)
Anelloviridae , DNA Virus Infections , Torque teno virus , Male , Humans , Female , Anelloviridae/genetics , DNA Virus Infections/epidemiology , Torque teno virus/genetics , Demography , Recombination, Genetic , DNA, Viral
9.
Nat Commun ; 14(1): 824, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36788246

ABSTRACT

Convergent evolution of SARS-CoV-2 Omicron BA.2, BA.4, and BA.5 lineages has led to the emergence of several new subvariants, including BA.2.75.2, BA.4.6. and BQ.1.1. The subvariant BQ.1.1 became predominant in many countries in December 2022. The subvariants carry an additional and often redundant set of mutations in the spike, likely responsible for increased transmissibility and immune evasion. Here, we established a viral amplification procedure to easily isolate Omicron strains. We examined their sensitivity to 6 therapeutic monoclonal antibodies (mAbs) and to 72 sera from Pfizer BNT162b2-vaccinated individuals, with or without BA.1/BA.2 or BA.5 breakthrough infection. Ronapreve (Casirivimab and Imdevimab) and Evusheld (Cilgavimab and Tixagevimab) lose antiviral efficacy against BA.2.75.2 and BQ.1.1, whereas Xevudy (Sotrovimab) remaine weakly active. BQ.1.1 is also resistant to Bebtelovimab. Neutralizing titers in triply vaccinated individuals are low to undetectable against BQ.1.1 and BA.2.75.2, 4 months after boosting. A BA.1/BA.2 breakthrough infection increases these titers, which remains about 18-fold lower against BA.2.75.2 and BQ.1.1, than against BA.1. Reciprocally, a BA.5 breakthrough infection increases more efficiently neutralization against BA.5 and BQ.1.1 than against BA.2.75.2. Thus, the evolution trajectory of novel Omicron subvariants facilitates their spread in immunized populations and raises concerns about the efficacy of most available mAbs.


Subject(s)
Antibodies, Neutralizing , BNT162 Vaccine , COVID-19 , SARS-CoV-2 , Humans , Antibodies, Viral , Antiviral Agents , Breakthrough Infections , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
10.
Cell Rep ; 42(2): 112048, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36753420

ABSTRACT

Bacteriophages play key roles in bacterial ecology and evolution and are potential antimicrobials. However, the determinants of phage-host specificity remain elusive. Here, we isolate 46 phages to challenge 138 representative clinical isolates of Klebsiella pneumoniae, a widespread opportunistic pathogen. Spot tests show a narrow host range for most phages, with <2% of 6,319 phage-host combinations tested yielding detectable interactions. Bacterial capsule diversity is the main factor restricting phage host range. Consequently, phage-encoded depolymerases are key determinants of host tropism, and depolymerase sequence types are associated with the ability to infect specific capsular types across phage families. However, all phages with a broader host range found do not encode canonical depolymerases, suggesting alternative modes of entry. These findings expand our knowledge of the complex interactions between bacteria and their viruses and point out the feasibility of predicting the first steps of phage infection using bacterial and phage genome sequences.


Subject(s)
Bacteriophages , Klebsiella , Humans , Klebsiella/genetics , Bacteriophages/genetics , Viral Tropism , Klebsiella pneumoniae/genetics , Genome, Viral
11.
Sci Rep ; 13(1): 662, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635310

ABSTRACT

The ability of natural selection to optimize traits depends on the topology of the genotype-fitness map (fitness landscape). Epistatic interactions produce rugged fitness landscapes, where adaptation is constrained by the presence of low-fitness intermediates. Here, we used simulations to explore how evolvability in rugged fitness landscapes is influenced by genetic complementation, a process whereby different sequence variants mutually compensate for their deleterious mutations. We designed our model inspired by viral populations, in which genetic variants are known to interact frequently through coinfection. Our simulations indicate that genetic complementation enables a more efficient exploration of rugged fitness landscapes. Although this benefit may be undermined by genetic parasites, its overall effect on evolvability remains positive in populations that exhibit strong relatedness between interacting sequences. Similar processes could operate in contexts other than viral coinfection, such as in the evolution of ploidy.


Subject(s)
Coinfection , Humans , Mutation , Coinfection/genetics , Models, Genetic , Selection, Genetic , Adaptation, Physiological/genetics , Genetic Fitness , Biological Evolution , Epistasis, Genetic
12.
iScience ; 26(1): 105749, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36590165

ABSTRACT

The emergence of cellular resistances to oncolytic viruses is an underexplored process that could compromise the efficacy of cancer virotherapy. Here, we isolated and characterized B16 mouse melanoma cells that evolved resistance to an oncolytic vesicular stomatitis virus (VSV-D51). RNA-seq revealed that resistance was associated to broad changes in gene expression, which typically involved chronic upregulation of interferon-stimulated genes. Innate immunity activation was maintained in the absence of the virus or other infection signals, and conferred cross-resistance to wild-type VSV and the unrelated Sindbis virus. Furthermore, we identified differentially expressed genes with no obvious role in antiviral immunity, such as Mnda, Psmb8 and Btn2a2, suggesting novel functions for these genes. Transcriptomic changes associated to VSV resistance were similar among B16 clones and in some clones derived from the mouse colon carcinoma cell line CT26, suggesting that oncolytic virus resistance involves certain conserved mechanisms and is therefore a potentially predictable process.

13.
Proc Natl Acad Sci U S A ; 119(50): e2215600119, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36472956

ABSTRACT

The transmission of viruses between different host species is a major source of emerging diseases and is of particular concern in the case of zoonotic transmission from mammals to humans. Several zoonosis risk factors have been identified, but it is currently unclear which viral traits primarily determine this process as previous work has focused on a few hundred viruses that are not representative of actual viral diversity. Here, we investigate fundamental virological traits that influence cross-species transmissibility and zoonotic propensity by interrogating a database of over 12,000 mammalian virus-host associations. Our analysis reveals that enveloped viruses tend to infect more host species and are more likely to be zoonotic than nonenveloped viruses, while other viral traits such as genome composition, structure, size, or the viral replication compartment play a less obvious role. This contrasts with the previous notion that viral envelopes did not significantly impact or even reduce zoonotic risk and should help better prioritize outbreak prevention efforts. We suggest several mechanisms by which viral envelopes could promote cross-species transmissibility, including structural flexibility of receptor-binding proteins and evasion of viral entry barriers.


Subject(s)
Viruses , Humans
14.
bioRxiv ; 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36415455

ABSTRACT

Convergent evolution of SARS-CoV-2 Omicron BA.2, BA.4 and BA.5 lineages has led to the emergence of several new subvariants, including BA.2.75.2, BA.4.6. and BQ.1.1. The subvariants BA.2.75.2 and BQ.1.1 are expected to become predominant in many countries in November 2022. They carry an additional and often redundant set of mutations in the spike, likely responsible for increased transmissibility and immune evasion. Here, we established a viral amplification procedure to easily isolate Omicron strains. We examined their sensitivity to 6 therapeutic monoclonal antibodies (mAbs) and to 72 sera from Pfizer BNT162b2-vaccinated individuals, with or without BA.1/BA.2 or BA.5 breakthrough infection. Ronapreve (Casirivimab and Imdevimab) and Evusheld (Cilgavimab and Tixagevimab) lost any antiviral efficacy against BA.2.75.2 and BQ.1.1, whereas Xevudy (Sotrovimab) remained weakly active. BQ.1.1 was also resistant to Bebtelovimab. Neutralizing titers in triply vaccinated individuals were low to undetectable against BQ.1.1 and BA.2.75.2, 4 months after boosting. A BA.1/BA.2 breakthrough infection increased these titers, which remained about 18-fold lower against BA.2.75.2 and BQ.1.1, than against BA.1. Reciprocally, a BA.5 breakthrough infection increased more efficiently neutralization against BA.5 and BQ.1.1 than against BA.2.75.2. Thus, the evolution trajectory of novel Omicron subvariants facilitated their spread in immunized populations and raises concerns about the efficacy of most currently available mAbs.

15.
Viruses ; 14(8)2022 07 31.
Article in English | MEDLINE | ID: mdl-36016318

ABSTRACT

The occlusion bodies (OBs) of certain alphabaculoviruses are polyhedrin-rich structures that mediate the collective transmission of tens of viral particles to the same insect host. In addition, in multiple nucleopolyhedroviruses, occlusion-derived virions (ODVs) form nucleocapsid aggregates that are delivered to the same host cell. It has been suggested that, by favoring coinfection, this transmission mode promotes evolutionarily stable interactions between different baculovirus variants. To quantify the joint transmission of different variants, we obtained OBs from cells coinfected with two viral constructs, each encoding a different fluorescent reporter, and used them for inoculating Spodoptera exigua larvae. The microscopy analysis of midguts revealed that the two reporter genes were typically segregated into different infection foci, suggesting that ODVs show limited ability to promote the co-transmission of different virus variants to the same host cell. However, a polyhedrin-deficient mutant underwent inter-host transmission by exploiting the OBs of a fully functional virus and re-acquired the lost gene through recombination, demonstrating cellular coinfection. Our results suggest that viral spatial segregation during transmission and primary infection limits interactions between different baculovirus variants, but that these interactions still occur within the cells of infected insects later in infection.


Subject(s)
Coinfection , Nucleopolyhedroviruses , Animals , Baculoviridae/genetics , Insecta , Larva , Nucleocapsid , Nucleopolyhedroviruses/genetics , Spodoptera
16.
Microorganisms ; 10(4)2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35456768

ABSTRACT

Antibiotic resistance is one of the major challenges that humankind shall face in the short term. (Bacterio)phage therapy is a valuable therapeutic alternative to antibiotics and, although the concept is almost as old as the discovery of phages, its wide application was hindered in the West by the discovery and development of antibiotics in the mid-twentieth century. However, research on phage therapy is currently experiencing a renaissance due to the antimicrobial resistance problem. Some countries are already adopting new ad hoc regulations to favor the short-term implantation of phage therapy in clinical practice. In this regard, the Phage Therapy Work Group from FAGOMA (Spanish Network of Bacteriophages and Transducing Elements) recently contacted the Spanish Drugs and Medical Devices Agency (AEMPS) to promote the regulation of phage therapy in Spain. As a result, FAGOMA was asked to provide a general view on key issues regarding phage therapy legislation. This review comes as the culmination of the FAGOMA initiative and aims at appropriately informing the regulatory debate on phage therapy.

17.
Biodes Res ; 2022: 9819272, 2022.
Article in English | MEDLINE | ID: mdl-37850129

ABSTRACT

Despite extensive evidence of virus-virus interactions, not much is known about their biological significance. Importantly, virus-virus interactions could have evolved as a form of cooperation or simply be a by-product of other processes. Here, we review and discuss different types of virus-virus interactions from the point of view of social evolution, which provides a well-established framework for interpreting the fitness costs and benefits of such traits. We also classify interactions according to their mechanisms of action and speculate on their evolutionary implications. As in any other biological system, the evolutionary stability of viral cooperation critically requires cheaters to be excluded from cooperative interactions. We discuss how cheater viruses exploit cooperative traits and how viral populations are able to counteract this maladaptive process.

18.
Viruses ; 13(11)2021 11 21.
Article in English | MEDLINE | ID: mdl-34835128

ABSTRACT

Metagenomics is greatly improving our ability to discover new viruses, as well as their possible associations with disease. However, metagenomics has also changed our understanding of viruses in general. The vast expansion of currently known viral diversity has revealed a large fraction of non-pathogenic viruses, and offers a new perspective in which viruses function as important components of many ecosystems. In this vein, studies of the human blood virome are often motivated by the search for new viral diseases, especially those associated with blood transfusions. However, these studies have revealed the common presence of apparently non-pathogenic viruses in blood, particularly human anelloviruses and, to a lower extent, human pegiviruses (HPgV). To shed light on the diversity of the human blood virome, we subjected pooled plasma samples from 587 healthy donors in Spain to a viral enrichment protocol, followed by massive parallel sequencing. This showed that anelloviruses were clearly the major component of the blood virome and showed remarkable diversity. In total, we assembled 332 complete or near-complete anellovirus genomes, 50 of which could be considered new species. HPgV was much less frequent, but we, nevertheless, recovered 17 different isolates that we subsequently used for characterizing the diversity of this virus. In-depth investigation of the human blood virome should help to elucidate the ecology of these viruses, and to unveil potentially associated diseases.


Subject(s)
Genome, Viral , Virome , Viruses/isolation & purification , Healthy Volunteers , Humans , Spain
19.
Annu Rev Virol ; 8(1): 183-199, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34242062

ABSTRACT

Despite their simplicity, viruses exhibit certain types of social interactions. Situations in which a given virus achieves higher fitness in combination with other members of the viral population have been described at the level of transmission, replication, suppression of host immune responses, and host killing, enabling the evolution of viral cooperation. Although cellular coinfection with multiple viral particles is the typical playground for these interactions, cooperation between viruses infecting different cells is also established through cellular and viral-encoded communication systems. In general, the stability of cooperation is compromised by cheater genotypes, as best exemplified by defective interfering particles. As predicted by social evolution theory, cheater invasion can be avoided when cooperators interact preferentially with other cooperators, a situation that is promoted in spatially structured populations. Processes such as transmission bottlenecks, organ compartmentalization, localized spread of infection foci, superinfection exclusion, and even discrete intracellular replication centers promote multilevel spatial structuring in viruses.


Subject(s)
Virion , Viruses , Genotype , Virus Replication , Viruses/genetics
20.
Virus Evol ; 7(1): veab045, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34040797

ABSTRACT

Viral laboratory evolution has been used for different applications, such as modeling viral emergence, drug-resistance prediction, and therapeutic virus optimization. However, these studies have been mainly performed in cell monolayers, a highly simplified environment, raising concerns about their applicability and relevance. To address this, we compared the evolution of a model virus in monolayers, spheroids, and tissue explants. We performed this analysis in the context of cancer virotherapy by performing serial transfers of an oncolytic vesicular stomatitis virus (VSV-Δ51) in 4T1 mouse mammary tumor cells. We found that VSV-Δ51 gained fitness in each of these three culture systems, and that adaptation to the more complex environments (spheroids or explants) correlated with increased fitness in monolayers. Most evolved lines improved their ability to suppress ß-interferon secretion compared to the VSV-Δ51 founder, suggesting that the selective pressure exerted by antiviral innate immunity was important in the three systems. However, system-specific patterns were also found. First, viruses evolved in monolayers remained more oncoselective that those evolved in spheroids, since the latter showed concomitant adaptation to non-tumoral mouse cells. Second, deep sequencing indicated that viral populations evolved in monolayers or explants tended to be more genetically diverse than those evolved in spheroids. Finally, we found highly variable outcomes among independent evolutionary lines propagated in explants. We conclude that experimental evolution in monolayers tends to be more reproducible than in spheroids or explants, and better preserves oncoselectivity. Our results also suggest that monolayers capture at least some relevant selective pressures present in more complex systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...