Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 13(5)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35630172

ABSTRACT

A current challenge regarding microfluidic paper-based analytical devices (µPAD) for blood plasma separation (BPS) and electrochemical immunodetection of protein biomarkers is how to achieve a µPAD that yields enough plasma to retain the biomarker for affinity biosensing in a functionalized electrode system. This paper describes the development of a BPS µPAD to detect and quantify the S100B biomarker from peripheral whole blood. The device uses NaCl functionalized VF2 filter paper as a sample collection pad, an MF1 filter paper for plasma retention, and an optimized microfluidic channel geometry. An inverted light microscope, scanning electron microscope (SEM), and image processing software were used for visualizing BPS efficiency. A design of experiments (DOE) assessed the device's efficacy using an S100B ELISA Kit to measure clinically relevant S100B concentrations in plasma. The BPS device obtained 50 µL of plasma from 300 µL of whole blood after 3.5 min. The statistical correlation of S100B concentrations obtained using plasma from standard centrifugation and the BPS device was 0.98. The BPS device provides a simple manufacturing protocol, short fabrication time, and is capable of S100B detection using ELISA, making one step towards the integration of technologies aimed at low-cost POC testing of clinically relevant biomarkers.

2.
PLoS One ; 17(2): e0263738, 2022.
Article in English | MEDLINE | ID: mdl-35130295

ABSTRACT

Point-of-Care (POC) testing for biomarker detection demands techniques that are easy to use, readily available, low-cost, and with rapid response times. This paper describes the development of a fully open-source, modular, wireless, battery-powered, smartphone-controlled, low-cost potentiostat capable of conducting electrochemical impedance spectroscopy for the electrochemical detection of the S100B protein captured in an ANTI-S100B functionalized thin-film gold interdigitated electrode platform to support traumatic brain injury diagnosis and treatment. EIS results from the developed potentiostat were validated with a commercial benchtop potentiostat by comparing impedance magnitude and phase values along the EIS frequency range. In addition, an experimental design was performed for detecting S100B in spiked human plasma samples with S100B concentrations of clinical utility, and a calibration curve was found for quantifying S100B detection. No statistically significant differences were found between EIS results from the developed potentiostat and the commercial potentiostat. Statistically significant differences in the changes in charge transfer resistance signal between each tested S100B concentration (p < 0.05) were found, with a limit of detection of 35.73 pg/mL. The modularity of the proposed potentiostat allows easier component changes according to the application demands in power, frequency excitation ranges, wireless communication protocol, signal amplification and transduction, precision, and sampling frequency of ADC, among others, when compared to state-of-the-art open-source EIS potentiostats. In addition, the use of minimal, easy acquirable open-source hardware and software, high-level filtering, accurate ADC, Fast Fourier Transform with low spectral leakage, wireless communication, and the simple user interface provides a framework for facilitating EIS analysis and developing new affordable instrumentation for POC biosensors integrated systems.


Subject(s)
Biosensing Techniques , Brain Injuries, Traumatic/diagnosis , Dielectric Spectroscopy , Point-of-Care Systems , S100 Calcium Binding Protein beta Subunit/blood , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Blood Chemical Analysis/instrumentation , Blood Chemical Analysis/methods , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/pathology , Colombia , Dielectric Spectroscopy/instrumentation , Dielectric Spectroscopy/methods , Electric Impedance , Electrochemical Techniques/instrumentation , Electrodes , Gold/chemistry , Humans , Potentiometry/instrumentation , Potentiometry/methods , S100 Calcium Binding Protein beta Subunit/analysis , Software , Trauma Severity Indices , Wireless Technology/instrumentation
3.
BioData Min ; 14(1): 31, 2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34243809

ABSTRACT

BACKGROUND: High-throughput sequencing enables the analysis of the composition of numerous biological systems, such as microbial communities. The identification of dependencies within these systems requires the analysis and assimilation of the underlying interaction patterns between all the variables that make up that system. However, this task poses a challenge when considering the compositional nature of the data coming from DNA-sequencing experiments because traditional interaction metrics (e.g., correlation) produce unreliable results when analyzing relative fractions instead of absolute abundances. The compositionality-associated challenges extend to the classification task, as it usually involves the characterization of the interactions between the principal descriptive variables of the datasets. The classification of new samples/patients into binary categories corresponding to dissimilar biological settings or phenotypes (e.g., control and cases) could help researchers in the development of treatments/drugs. RESULTS: Here, we develop and exemplify a new approach, applicable to compositional data, for the classification of new samples into two groups with different biological settings. We propose a new metric to characterize and quantify the overall correlation structure deviation between these groups and a technique for dimensionality reduction to facilitate graphical representation. We conduct simulation experiments with synthetic data to assess the proposed method's classification accuracy. Moreover, we illustrate the performance of the proposed approach using Operational Taxonomic Unit (OTU) count tables obtained through 16S rRNA gene sequencing data from two microbiota experiments. Also, compare our method's performance with that of two state-of-the-art methods. CONCLUSIONS: Simulation experiments show that our method achieves a classification accuracy equal to or greater than 98% when using synthetic data. Finally, our method outperforms the other classification methods with real datasets from gene sequencing experiments.

4.
Sensors (Basel) ; 21(6)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33801798

ABSTRACT

Neuronal damage secondary to traumatic brain injury (TBI) is a rapidly evolving condition, which requires therapeutic decisions based on the timely identification of clinical deterioration. Changes in S100B biomarker levels are associated with TBI severity and patient outcome. The S100B quantification is often difficult since standard immunoassays are time-consuming, costly, and require extensive expertise. A zero-length cross-linking approach on a cysteamine self-assembled monolayer (SAM) was performed to immobilize anti-S100B monoclonal antibodies onto both planar (AuEs) and interdigitated (AuIDEs) gold electrodes via carbonyl-bond. Surface characterization was performed by atomic force microscopy (AFM) and specular-reflectance FTIR for each functionalization step. Biosensor response was studied using the change in charge-transfer resistance (Rct) from electrochemical impedance spectroscopy (EIS) in potassium ferrocyanide, with [S100B] ranging 10-1000 pg/mL. A single-frequency analysis for capacitances was also performed in AuIDEs. Full factorial designs were applied to assess biosensor sensitivity, specificity, and limit-of-detection (LOD). Higher Rct values were found with increased S100B concentration in both platforms. LODs were 18 pg/mL(AuES) and 6 pg/mL(AuIDEs). AuIDEs provide a simpler manufacturing protocol, with reduced fabrication time and possibly costs, simpler electrochemical response analysis, and could be used for single-frequency analysis for monitoring capacitance changes related to S100B levels.

SELECTION OF CITATIONS
SEARCH DETAIL
...