Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39000370

ABSTRACT

Osteoarthritis (OA) is a degenerative joint disorder that is distinguished by inflammation and chronic cartilage damage. Interleukin-1ß (IL-1ß) is a proinflammatory cytokine that plays an important role in the catabolic processes that underlie the pathogenesis of OA. In this study, we investigate the therapeutic efficacy of exosomes derived from untreated bone-marrow-derived mesenchymal stem cells (BMMSC-Exo) and those treated with cinnamaldehyde (BMMSC-CA-Exo) for preventing the in vitro catabolic effects of IL-1ß on chondrocytes. We stimulated chondrocytes with IL-1ß to mimic the inflammatory microenvironment of OA. We then treated these chondrocytes with BMMSC-Exo and BMMSC-CA-Exo isolated via an aqueous two-phase system and evaluated their effects on the key cellular processes using molecular techniques. Our findings revealed that treatment with BMMSC-Exo reduces the catabolic effects of IL-1ß on chondrocytes and alleviates inflammation. However, further studies directly comparing treatments with BMMSC-Exo and BMMSC-CA-Exo are needed to determine if CA preconditioning can provide additional anti-inflammatory benefits to the exosomes beyond those of CA preconditioning or treatment with regular BMMSC-Exo. Through a comprehensive molecular analysis, we elucidated the regulatory mechanisms underlying this protective effect. We found a significant downregulation of proinflammatory signaling pathways in exosome-infected chondrocytes, suggesting the potential modulation of the NF-κB and MAPK signaling cascades. Furthermore, our study identified the molecular cargo of BMMSC-Exo and BMMSC-CA-Exo, determining the key molecules, such as anti-inflammatory cytokines and cartilage-associated factors, that may contribute to their acquisition of chondroprotective properties. In summary, BMMSC-Exo and BMMSC-CA-Exo exhibit the potential as therapeutic agents for OA by antagonizing the in vitro catabolic effects of IL-1ß on chondrocytes. The regulation of the proinflammatory signaling pathways and bioactive molecules delivered by the exosomes suggests a multifaceted mechanism of action. These findings highlight the need for further investigation into exosome-based therapies for OA and joint-related diseases.


Subject(s)
Acrolein , Chondrocytes , Exosomes , Inflammation , Interleukin-1beta , Mesenchymal Stem Cells , Signal Transduction , Exosomes/metabolism , Interleukin-1beta/metabolism , Acrolein/analogs & derivatives , Acrolein/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Chondrocytes/metabolism , Chondrocytes/drug effects , Signal Transduction/drug effects , Inflammation/metabolism , Animals , Osteoarthritis/metabolism , Osteoarthritis/drug therapy , Humans , Cells, Cultured
2.
ACS Omega ; 9(19): 21467-21483, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38764654

ABSTRACT

Osteoarthritis (OA) is a chronic musculoskeletal disorder characterized by cartilage degeneration and synovial inflammation. Paracrine interactions between chondrocytes and macrophages play an essential role in the onset and progression of OA. In this study, in replicating the inflammatory response during OA pathogenesis, chondrocytes were treated with interleukin-1ß (IL-1ß), and macrophages were treated with lipopolysaccharide and interferon-γ. In addition, a coculture system was developed to simulate the biological situation in the joint. In this study, we examined the impact of hyaluronic acid (HA) viscosupplement, particularly Hyruan Plus, on chondrocytes and macrophages. Notably, this viscosupplement has demonstrated promising outcomes in reducing inflammation; however, the underlying mechanism of action remains elusive. The viscosupplement attenuated inflammation, showing an inhibitory effect on nitric oxide production, downregulating proinflammatory cytokines such as matrix metalloproteinases (MMP13 and MMP3), and upregulating the expression levels of type II collagen and aggrecan in chondrocytes. HA also reduced the expression level of inflammatory cytokines such as IL-1ß, TNF-α, and IL-6 in macrophages, and HA exerted an overall protective effect by partially suppressing the MAPK pathway in chondrocytes and p65/NF-κB signaling in macrophages. Therefore, HA shows potential as a viscosupplement for treating arthritic joints.

3.
Int J Stem Cells ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38246659

ABSTRACT

Osteoarthritis (OA) is a joint disorder caused by wear and tear of the cartilage that cushions the joints. It is a progressive condition that can cause significant pain and disability. Currently, there is no cure for OA, though there are treatments available to manage symptoms and slow the progression of the disease. A chondral defect is a common and devastating lesion that is challenging to treat due to its avascular and aneural nature. However, there are conventional therapies available, ranging from microfracture to cell-based therapy. Anyhow, its efficiency in cartilage defects is limited due to unclear cell viability. Exosomes have emerged as a potent therapeutic tool for chondral defects because they are a complicated complex containing cargo of proteins, DNA, and RNA as well as the ability to target cells due to their phospholipidic composition and the altering exosomal contents that boost regeneration potential. Exosomes are used in a variety of applications, including tissue healing and anti-inflammatory therapy. As in recent years, biomaterials-based bio fabrication has gained popularity among the many printable polymer-based hydrogels, tissue-specific decellularized extracellular matrix might boost the effects rather than an extracellular matrix imitating environment, a short note has been discussed. Exosomes are believed to be the greatest alternative option for current cell-based therapy, and future progress in exosome-based therapy could have a greater influence in the field of orthopaedics. The review focuses extensively on the insights of exosome use and scientific breakthroughs centered OA.

4.
Int J Mol Sci ; 24(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37569659

ABSTRACT

Osteoarthritis (OA) is characterized by degeneration of the joint cartilage, inflammation, and a change in the chondrocyte phenotype. Inflammation also promotes cell hypertrophy in human articular chondrocytes (HC-a) by activating the NF-κB pathway. Chondrocyte hypertrophy and inflammation promote extracellular matrix degradation (ECM). Chondrocytes depend on Smad signaling to control and regulate cell hypertrophy as well as to maintain the ECM. The involvement of these two pathways is crucial for preserving the homeostasis of articular cartilage. In recent years, Polynucleotides Highly Purified Technology (PN-HPT) has emerged as a promising area of research for the treatment of OA. PN-HPT involves the use of polynucleotide-based agents with controlled natural origins and high purification levels. In this study, we focused on evaluating the efficacy of a specific polynucleotide sodium agent, known as CONJURAN, which is derived from fish sperm. Polynucleotides (PN), which are physiologically present in the matrix and function as water-soluble nucleic acids with a gel-like property, have been used to treat patients with OA. However, the specific mechanisms underlying the effect remain unclear. Therefore, we investigated the effect of PN in an OA cell model in which HC-a cells were stimulated with interleukin-1ß (IL-1ß) with or without PN treatment. The CCK-8 assay was used to assess the cytotoxic effects of PN. Furthermore, the enzyme-linked immunosorbent assay was utilized to detect MMP13 levels, and the nitric oxide assay was utilized to determine the effect of PN on inflammation. The anti-inflammatory effects of PN and related mechanisms were investigated using quantitative PCR, Western blot analysis, and immunofluorescence to examine and analyze relative markers. PN inhibited IL-1ß induced destruction of genes and proteins by downregulating the expression of MMP3, MMP13, iNOS, and COX-2 while increasing the expression of aggrecan (ACAN) and collagen II (COL2A1). This study demonstrates, for the first time, that PN exerted anti-inflammatory effects by partially inhibiting the NF-κB pathway and increasing the Smad2/3 pathway. Based on our findings, PN can potentially serve as a treatment for OA.


Subject(s)
NF-kappa B , Osteoarthritis , Animals , Humans , Male , NF-kappa B/metabolism , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Polynucleotides/pharmacology , Polynucleotides/metabolism , Polynucleotides/therapeutic use , Cells, Cultured , Semen/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Osteoarthritis/metabolism , Chondrocytes/metabolism , Anti-Inflammatory Agents/pharmacology , Hypertrophy/metabolism , Interleukin-1beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL