Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters










Publication year range
1.
Elife ; 122024 Feb 19.
Article in English | MEDLINE | ID: mdl-38372335

ABSTRACT

Aldehydes, being an integral part of carbon metabolism, energy generation, and signalling pathways, are ingrained in plant physiology. Land plants have developed intricate metabolic pathways which involve production of reactive aldehydes and its detoxification to survive harsh terrestrial environments. Here, we show that physiologically produced aldehydes, i.e., formaldehyde and methylglyoxal in addition to acetaldehyde, generate adducts with aminoacyl-tRNAs, a substrate for protein synthesis. Plants are unique in possessing two distinct chiral proofreading systems, D-aminoacyl-tRNA deacylase1 (DTD1) and DTD2, of bacterial and archaeal origins, respectively. Extensive biochemical analysis revealed that only archaeal DTD2 can remove the stable D-aminoacyl adducts on tRNA thereby shielding archaea and plants from these system-generated aldehydes. Using Arabidopsis as a model system, we have shown that the loss of DTD2 gene renders plants susceptible to these toxic aldehydes as they generate stable alkyl modification on D-aminoacyl-tRNAs, which are recycled only by DTD2. Bioinformatic analysis identifies the expansion of aldehyde metabolising repertoire in land plant ancestors which strongly correlates with the recruitment of archaeal DTD2. Finally, we demonstrate that the overexpression of DTD2 offers better protection against aldehydes than in wild type Arabidopsis highlighting its role as a multi-aldehyde detoxifier that can be explored as a transgenic crop development strategy.


Subject(s)
Aldehydes , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , RNA, Transfer, Amino Acyl/metabolism , Bacteria/genetics , Archaea/genetics , Archaea/metabolism , RNA, Transfer
2.
Nucleic Acids Res ; 52(5): 2130-2141, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38407292

ABSTRACT

Outliers in scientific observations are often ignored and mostly remain unreported. However, presenting them is always beneficial since they could reflect the actual anomalies that might open new avenues. Here, we describe two examples of the above that came out of the laboratories of two of the pioneers of nucleic acid research in the area of protein biosynthesis, Paul Berg and Donald Crothers. Their work on the identification of D-aminoacyl-tRNA deacylase (DTD) and 'Discriminator hypothesis', respectively, were hugely ahead of their time and were partly against the general paradigm at that time. In both of the above works, the smallest and the only achiral amino acid turned out to be an outlier as DTD can act weakly on glycine charged tRNAs with a unique discriminator base of 'Uracil'. This peculiar nature of glycine remained an enigma for nearly half a century. With a load of available information on the subject by the turn of the century, our work on 'chiral proofreading' mechanisms during protein biosynthesis serendipitously led us to revisit these findings. Here, we describe how we uncovered an unexpected connection between them that has implications for evolution of different eukaryotic life forms.


Subject(s)
Aminoacyltransferases , Eukaryota , Glycine , Protein Biosynthesis , Amino Acids/genetics , Aminoacyltransferases/genetics , Glycine/genetics , RNA, Transfer, Amino Acyl/metabolism , Research , Biochemistry , Eukaryota/chemistry , Eukaryota/genetics
3.
Enzyme Microb Technol ; 174: 110372, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38104475

ABSTRACT

Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight disease in rice. As a part of its virulence repertoire, Xoo secretes a cell wall degrading enzyme Cellobiosidase (CbsA), which is a critical virulence factor and also a determinant of tissue specificity. CbsA protein is made up of an N-terminal catalytic domain and a C-terminal fibronectin type III domain. According to the CAZy classification, the catalytic domain of CbsA protein belongs to the glycosyl hydrolase-6 (GH6) family that performs acid-base catalysis. However, the identity of the catalytic acid and the catalytic base of CbsA is not known. Based on the available structural and biochemical data, we identified putative catalytic residues and probed them by site-directed mutagenesis. Intriguingly, the biochemical analysis showed that none of the mutations abolishes the catalytic activity of CbsA, an observation that is contrary to other GH6 family members. All the mutants exhibited altered enzymatic activity and caused significant virulence deficiency in Xoo emphasising the requirement of specific exoglucanase activity of wild-type CbsA for virulence on rice. Our study highlights the need for further studies and the detailed characterisation of bacterial exoglucanases.


Subject(s)
Oryza , Xanthomonas , Virulence/genetics , Oryza/metabolism , Catalytic Domain , Xanthomonas/genetics , Xanthomonas/metabolism , Plant Diseases/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial
4.
Proteins ; 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37615273

ABSTRACT

Fatty acids are used in fundamental cellular processes, such as membrane biogenesis, energy generation, post-translational modification of proteins, and so forth. These processes require the activation of fatty acids by adenosine triphosphate (ATP), followed by condensation with coenzyme-A (CoA), catalyzed by the omnipresent enzyme called Fatty acyl-CoA ligases (FACLs). However, Fatty acyl-AMP ligases (FAALs), the structural homologs of FACLs, operate in an unprecedented CoA-independent manner. FAALs transfer fatty acids to the acyl carrier protein (ACP) domain of polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) for the biosynthesis of various antibiotics, lipopeptides, virulent complex lipids, and so forth in bacteria. Recent structural and biochemical insights from our group provide a detailed understanding of the mode of CoA rejection and ACP acceptance by FAALs. In this review, we have discussed advances in the mechanistic, evolutionary, and functional understanding of FAALs and FAAL-like domains across life forms. Here, we are proposing a "Five-tier" mechanistic model to explain the specificity of FAALs. We further demonstrate how FAAL-like domains have been repurposed into a new family of proteins in eukaryotes with a novel function in lipid metabolism.

5.
Proc Natl Acad Sci U S A ; 120(24): e2219292120, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37276405

ABSTRACT

Plants have two endosymbiotic organelles originated from two bacterial ancestors. The transition from an independent bacterium to a successful organelle would have required extensive rewiring of biochemical networks for its integration with archaeal host. Here, using Arabidopsis as a model system, we show that plant D-aminoacyl-tRNA deacylase 1 (DTD1), of bacterial origin, is detrimental to organellar protein synthesis owing to its changed tRNA recognition code. Plants survive this conflict by spatially restricting the conflicted DTD1 to the cytosol. In addition, plants have targeted archaeal DTD2 to both the organelles as it is compatible with their translation machinery due to its strict D-chiral specificity and lack of tRNA determinants. Intriguingly, plants have confined bacterial-derived DTD1 to work in archaeal-derived cytosolic compartment whereas archaeal DTD2 is targeted to bacterial-derived organelles. Overall, the study provides a remarkable example of the criticality of optimization of biochemical networks for survival and evolution of plant mitochondria and chloroplast.


Subject(s)
Arabidopsis , Organelles , Organelles/metabolism , Mitochondria/metabolism , RNA, Transfer, Amino Acyl/metabolism , Chloroplasts/metabolism , RNA, Transfer/metabolism , Arabidopsis/genetics
6.
Nucleic Acids Res ; 51(7): 3327-3340, 2023 04 24.
Article in English | MEDLINE | ID: mdl-36951106

ABSTRACT

Homochirality of the cellular proteome is attributed to the L-chiral bias of the translation apparatus. The chiral specificity of enzymes was elegantly explained using the 'four-location' model by Koshland two decades ago. In accordance with the model, it was envisaged and noted that some aminoacyl-tRNA synthetases (aaRS) that charge larger amino acids are porous to D-amino acids. However, a recent study showed that alanyl-tRNA synthetase (AlaRS) can mischarge D-alanine and that its editing domain, but not the universally present D-aminoacyl-tRNA deacylase (DTD), is responsible for correcting the chirality-based error. Here, using in vitro and in vivo data coupled with structural analysis, we show that AlaRS catalytic site is a strict D-chiral rejection system and therefore does not activate D-alanine. It obviates the need for AlaRS editing domain to be active against D-Ala-tRNAAla and we show that it is indeed the case as it only corrects L-serine and glycine mischarging. We further provide direct biochemical evidence showing activity of DTD on smaller D-aa-tRNAs that corroborates with the L-chiral rejection mode of action proposed earlier. Overall, while removing anomalies in the fundamental recognition mechanisms, the current study further substantiates how chiral fidelity is perpetuated during protein biosynthesis.


Subject(s)
Alanine-tRNA Ligase , Protein Biosynthesis , Alanine-tRNA Ligase/genetics , Alanine-tRNA Ligase/metabolism , Amino Acids/genetics , Amino Acyl-tRNA Synthetases/genetics , RNA, Transfer/metabolism , Animals
7.
Elife ; 112022 06 29.
Article in English | MEDLINE | ID: mdl-35766356

ABSTRACT

Chain-length-specific subsets of diacylglycerol (DAG) lipids are proposed to regulate differential physiological responses ranging from signal transduction to modulation of the membrane properties. However, the mechanism or molecular players regulating the subsets of DAG species remain unknown. Here, we uncover the role of a conserved eukaryotic protein family, DISCO-interacting protein 2 (DIP2) as a homeostatic regulator of a chemically distinct subset of DAGs using yeast, fly, and mouse models. Genetic and chemical screens along with lipidomics analysis in yeast reveal that DIP2 prevents the toxic accumulation of specific DAGs in the logarithmic growth phase, which otherwise leads to endoplasmic reticulum stress. We also show that the fatty acyl-AMP ligase-like domains of DIP2 are essential for the redirection of the flux of DAG subspecies to storage lipid, triacylglycerols. DIP2 is associated with vacuoles through mitochondria-vacuole contact sites and such modulation of selective DAG abundance by DIP2 is found to be crucial for optimal vacuole membrane fusion and consequently osmoadaptation in yeast. Thus, the study illuminates an unprecedented DAG metabolism route and provides new insights on how cell fine-tunes DAG subspecies for cellular homeostasis and environmental adaptation.


Lipids, such as fats and hormones, constitute one of the main building blocks of cells. There are thousands of different lipids each with distinctive chemical properties that allow them to carry out specific roles. For example, a group of lipids called diacylglycerols help cells perform a myriad of tasks, like sensing external signals, making membranes, and storing energy. The production and breakdown of diacylglycerols is therefore tightly regulated. However, very little is known about the molecules involved in this metabolic process. One possible candidate is the enzyme DIP2 which is comprised of a protein module known as FAAL (short for fatty acyl-AMP ligase). FAAL belongs to a family of enzymes that synthesize lipid-like molecules in bacteria. In 2021, a group of researchers tracked the evolutionary trajectory of these bacterial proteins and found that most of them were lost in eukaryotes, such as animals and fungi. FAAL-like proteins, however, had been retained through evolution and incorporated in to DIP2. Here, Mondal, Kinatukara et al. ­ including some of the researchers involved in the 2021 study ­ have used a combination of genetic and biochemical experiments to investigate whether and how DIP2 contributes to lipid metabolism in eukaryotes. They found that yeast cells without the gene for DIP2 had higher levels of diacylglycerols which hampered the shape and function of certain cellular compartments. The mutant cells were also unable to convert diacylglycerols in to another group of lipids which are involved in energy storage. This effect was observed in fruit flies and mice lacking DIP2, suggesting that this role for DIP2 is conserved across most eukaryotes. Further experiments in yeast cells revealed that unlike other enzymes that metabolize diacylglycerols, DIP2 only acted on a sub-population of diacylglycerols at specific locations and times. Furthermore, yeast cells lacking DIP2 could still grow under ideal conditions, but could not cope with high or low salt concentrations in their surroundings, suggesting that the enzyme helps cells deal with environmental stresses. Since DIP2 is found in most eukaryotes, understanding how it works could be useful for multiple branches of biology. For example, some pathogenic fungi that cause diseases in crop plants and humans also rely on DIP2. Further studies are needed to better understand the role that DIP2 plays in other eukaryotic species which may shed light on other processes the enzyme is involved in.


Subject(s)
Diglycerides , Saccharomyces cerevisiae , Animals , Diglycerides/metabolism , Homeostasis , Lipid Metabolism , Mice , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Triglycerides/metabolism
8.
FEBS Lett ; 596(13): 1615-1627, 2022 07.
Article in English | MEDLINE | ID: mdl-35662005

ABSTRACT

Homochirality of biomacromolecules is a prerequisite for their proper functioning and hence essential for all life forms. This underscores the role of cellular chiral checkpoints in enforcing homochirality during protein biosynthesis. d-Aminoacyl-tRNA deacylase (DTD) is an enzyme that performs 'chirality-based proofreading' to remove d-amino acids mistakenly attached to tRNAs, thus recycling them for further rounds of translation. Paradoxically, owing to its l-chiral rejection mode of action, DTD can remove glycine as well, which is an achiral amino acid. However, this activity is modulated by discriminator base (N73) in tRNA, a unique element that protects the cognate Gly-tRNAGly . Here, we review our recent work showing various aspects of DTD and tRNAGly coevolution and its key role in maintaining proper translation surveillance in both bacteria and eukaryotes. Moreover, we also discuss two major optimization events on DTD and tRNA that resolved compatibility issues among the archaeal and the bacterial translation apparatuses. Importantly, such optimizations are necessary for the emergence of mitochondria and successful eukaryogenesis.


Subject(s)
Protein Biosynthesis , RNA, Transfer, Gly , Amino Acids/metabolism , Glycine/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA, Transfer, Amino Acyl/chemistry , RNA, Transfer, Amino Acyl/metabolism , RNA, Transfer, Gly/metabolism
9.
Mol Plant Pathol ; 23(7): 1011-1021, 2022 07.
Article in English | MEDLINE | ID: mdl-35278018

ABSTRACT

Cellobiosidase (CbsA) is an important secreted virulence factor of Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight of rice. CbsA is one of several cell wall-degrading enzymes secreted by Xoo via the type II secretion system (T2SS). CbsA is considered a fundamental virulence factor for vascular pathogenesis. CbsA has an N-terminal glycosyl hydrolase domain and a C-terminal fibronectin type III (FnIII) domain. Interestingly, the secreted form of CbsA lacks the FnIII domain during in planta growth. Here we show that the presence of the FnIII domain inhibits the enzyme activity of CbsA on polysaccharide substrates like carboxymethylcellulose. The FnIII domain is required for the interaction of CbsA with SecB chaperone, and this interaction is crucial for the stability and efficient transport of CbsA across the inner membrane. Deletion of the FnIII domain reduced virulence similar to ΔcbsA Xoo, which corroborates the importance of the FnIII domain in CbsA. Our work elucidates a hitherto unknown function of the FnIII domain in enabling the virulence-promoting activity of CbsA.


Subject(s)
Oryza , Xanthomonas , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Wall/metabolism , Gene Expression Regulation, Bacterial , Glycoside Hydrolases , Oryza/microbiology , Plant Diseases/microbiology , Virulence Factors/metabolism
10.
Sci Adv ; 8(2): eabj7307, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35020439

ABSTRACT

Mitochondria emerged through an endosymbiotic event involving a proteobacterium and an archaeal host. However, the process of optimization of cellular processes required for the successful evolution and survival of mitochondria, which integrates components from two evolutionarily distinct ancestors as well as novel eukaryotic elements, is not well understood. We identify two key switches in the translational machinery­one in the discriminator recognition code of a chiral proofreader DTD [d-aminoacyl­transfer RNA (tRNA) deacylase] and the other in mitochondrial tRNAGly­that enable the compatibility between disparate elements essential for survival. Notably, the mito-tRNAGly discriminator element is the only one to switch from pyrimidine to purine during the bacteria-to-mitochondria transition. We capture this code transition in the Jakobida, an early diverging eukaryotic clade bearing the most bacterial-like mito-genome, wherein both discriminator elements are present. This study underscores the need to explore the fundamental integration strategies critical for mitochondrial and eukaryotic evolution.

11.
Elife ; 102021 09 07.
Article in English | MEDLINE | ID: mdl-34490847

ABSTRACT

Fatty acyl-AMP ligases (FAALs) channelize fatty acids towards biosynthesis of virulent lipids in mycobacteria and other pharmaceutically or ecologically important polyketides and lipopeptides in other microbes. They do so by bypassing the ubiquitous coenzyme A-dependent activation and rely on the acyl carrier protein-tethered 4'-phosphopantetheine (holo-ACP). The molecular basis of how FAALs strictly reject chemically identical and abundant acceptors like coenzyme A (CoA) and accept holo-ACP unlike other members of the ANL superfamily remains elusive. We show that FAALs have plugged the promiscuous canonical CoA-binding pockets and utilize highly selective alternative binding sites. These alternative pockets can distinguish adenosine 3',5'-bisphosphate-containing CoA from holo-ACP and thus FAALs can distinguish between CoA and holo-ACP. These exclusive features helped identify the omnipresence of FAAL-like proteins and their emergence in plants, fungi, and animals with unconventional domain organizations. The universal distribution of FAALs suggests that they are parallelly evolved with FACLs for ensuring a CoA-independent activation and redirection of fatty acids towards lipidic metabolites.


Subject(s)
Acyl Coenzyme A/metabolism , Adenosine Monophosphate/metabolism , Bacterial Proteins/metabolism , Fatty Acids/metabolism , Ligases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Ligases/chemistry , Ligases/genetics , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Structure-Activity Relationship
12.
Sci Adv ; 7(6)2021 02.
Article in English | MEDLINE | ID: mdl-33536220

ABSTRACT

Streptophyte algae emerged as a land plant with adaptations that eventually led to terrestrialization. Land plants encounter a range of biotic and abiotic stresses that elicit anaerobic stress responses. Here, we show that acetaldehyde, a toxic metabolite of anaerobic stress, targets and generates ethyl adducts on aminoacyl-tRNA, a central component of the translation machinery. However, elongation factor thermo unstable (EF-Tu) safeguards l-aminoacyl-tRNA, but not d-aminoacyl-tRNA, from being modified by acetaldehyde. We identified a unique activity of archaeal-derived chiral proofreading module, d-aminoacyl-tRNA deacylase 2 (DTD2), that removes N-ethyl adducts formed on d-aminoacyl-tRNAs (NEDATs). Thus, the study provides the molecular basis of ethanol and acetaldehyde hypersensitivity in DTD2 knockout plants. We uncovered an important gene transfer event from methanogenic archaea to the ancestor of land plants. While missing in other algal lineages, DTD2 is conserved from streptophyte algae to land plants, suggesting its role toward the emergence and evolution of land plants.

13.
Transgenic Res ; 29(5-6): 553-562, 2020 12.
Article in English | MEDLINE | ID: mdl-33184751

ABSTRACT

Disco-interacting protein 2 is a highly conserved three-domain protein with two tandem Adenylate-forming domains. It is proposed to influence the processes involved in neuronal development by influencing lipid metabolism and remains to be characterized. In this study, we show that Disco-interacting protein 2a null mice do not exhibit overt phenotype defects. However, the body composition differences were observed in these mice under different dietary regimens. The neutral lipid composition of two different diets was characterized, and it was observed that the new-born mice grow relatively slower than the wild-type mice with delayed appearance of features such as dentition when fed with high-triacylglycerol NIN-formulation diet. The high-diacylglycerol Safe-formulation diet was found to accumulate more fat mass in mice than those fed with high-triacylglycerol NIN-formulation diet beyond 10 months. These findings point to a proposed relationship between dietary components (particularly the lipid composition) and body composition along with the growth of neonates in mice lacking the gene Disco-interacting protein 2a.


Subject(s)
Animals, Newborn/growth & development , Nuclear Proteins/genetics , Obesity/genetics , Adipose Tissue/physiopathology , Animal Feed , Animals , Animals, Newborn/genetics , Body Composition/genetics , Diet/adverse effects , Diglycerides/pharmacology , Female , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Nuclear Proteins/metabolism , Obesity/etiology , Triglycerides/pharmacology
14.
Elife ; 92020 05 28.
Article in English | MEDLINE | ID: mdl-32463355

ABSTRACT

The emergence of multicellularity in Animalia is associated with increase in ROS and expansion of tRNA-isodecoders. tRNA expansion leads to misselection resulting in a critical error of L-Ala mischarged onto tRNAThr, which is proofread by Animalia-specific-tRNA Deacylase (ATD) in vitro. Here we show that in addition to ATD, threonyl-tRNA synthetase (ThrRS) can clear the error in cellular scenario. This two-tier functional redundancy for translation quality control breaks down during oxidative stress, wherein ThrRS is rendered inactive. Therefore, ATD knockout cells display pronounced sensitivity through increased mistranslation of threonine codons leading to cell death. Strikingly, we identify the emergence of ATD along with the error inducing tRNA species starting from Choanoflagellates thus uncovering an important genomic innovation required for multicellularity that occurred in unicellular ancestors of animals. The study further provides a plausible regulatory mechanism wherein the cellular fate of tRNAs can be switched from protein biosynthesis to non-canonical functions.


The first animals evolved around 750 million years ago from single-celled ancestors that were most similar to modern-day organisms called the Choanoflagellates. As animals evolved they developed more complex body plans consisting of multiple cells organized into larger structures known as tissues and organs. Over time cells also evolved increased levels of molecules called reactive oxygen species, which are involved in many essential cell processes but are toxic at high levels. Animal cells also contain more types of molecules known as transfer ribonucleic acids, or tRNAs for short, than Choanoflagellate cells and other single-celled organisms. These molecules deliver building blocks known as amino acids to the machinery that produces new proteins. To ensure the proteins are made correctly, it is important that tRNAs deliver specific amino acids to the protein-building machinery in the right order. Each type of tRNA usually only pairs with a specific type of amino acid, but sometimes the enzymes involved in this process can make mistakes. Therefore, cells contain proofreading enzymes that help remove incorrect amino acids on tRNAs. One such enzyme ­ called ATD ­ is only found in animals. Experiments in test tubes reported that ATD removes an amino acid called alanine from tRNAs that are supposed to carry threonine, but its precise role in living cells remained unclear. To address this question, Kuncha et al. studied proofreading enzymes in human kidney cells. The experiments showed that, in addition to ATD, a second enzyme known as ThrRS was also able to correct alanine substitutions for threonines on tRNAs. However, reactive oxygen species inactivated the proofreading ability of ThrRS, suggesting ATD plays an essential role in correcting errors in cells containing high levels of reactive oxygen species. These findings suggest that as organisms evolved multiple cells and the levels of tRNA and oxidative stress increased, this led to the appearance of a new proofreading enzyme. Further studies found that ATD originated around 900 million years ago, before Choanoflagellates and animals diverged, indicating these enzymes might have helped to shape the evolution of animals. The next step following on from this work will be to understand the role of ATD in the cells of organs that are known to have particularly high levels of reactive oxygen species, such as testis and ovaries.


Subject(s)
Eukaryota/enzymology , Eukaryota/genetics , Hydrolases/metabolism , Protein Biosynthesis , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Animals , Biological Evolution , Cell Line , Choanoflagellata/enzymology , Choanoflagellata/genetics , Choanoflagellata/metabolism , Eukaryota/metabolism , Genome , Genomics , Humans , Hydrolases/genetics , Mice , Oxidative Stress , RNA, Transfer/genetics , RNA, Transfer/metabolism , Threonine/metabolism
15.
J Biol Chem ; 294(45): 16535-16548, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31591268

ABSTRACT

Protein chains contain only l-amino acids, with the exception of the achiral glycine, making the chains homochiral. This homochirality is a prerequisite for proper protein folding and, hence, normal cellular function. The importance of d-amino acids as a component of the bacterial cell wall and their roles in neurotransmission in higher eukaryotes are well-established. However, the wider presence and the corresponding physiological roles of these specific amino acid stereoisomers have been appreciated only recently. Therefore, it is expected that enantiomeric fidelity has to be a key component of all of the steps in translation. Cells employ various molecular mechanisms for keeping d-amino acids away from the synthesis of nascent polypeptide chains. The major factors involved in this exclusion are aminoacyl-tRNA synthetases (aaRSs), elongation factor thermo-unstable (EF-Tu), the ribosome, and d-aminoacyl-tRNA deacylase (DTD). aaRS, EF-Tu, and the ribosome act as "chiral checkpoints" by preferentially binding to l-amino acids or l-aminoacyl-tRNAs, thereby excluding d-amino acids. Interestingly, DTD, which is conserved across all life forms, performs "chiral proofreading," as it removes d-amino acids erroneously added to tRNA. Here, we comprehensively review d-amino acids with respect to their occurrence and physiological roles, implications for chiral checkpoints required for translation fidelity, and potential use in synthetic biology.


Subject(s)
Bacterial Proteins/metabolism , Protein Biosynthesis/physiology , Amino Acids/metabolism , Amino Acyl-tRNA Synthetases/metabolism , Bacteria/metabolism , Cell Wall/metabolism , Peptide Elongation Factor Tu/metabolism , Ribosomes/metabolism , Stereoisomerism
16.
J Bacteriol ; 201(23)2019 12 01.
Article in English | MEDLINE | ID: mdl-31527113

ABSTRACT

The prokaryotic ßγ-crystallins are a large group of uncharacterized domains with Ca2+-binding motifs. We have observed that a vast number of these domains are found appended to other domains, in particular, the carbohydrate-active enzyme (CAZy) domains. To elucidate the functional significance of these prospective Ca2+ sensors in bacteria and this widespread domain association, we have studied one typical example from Clostridium beijerinckii, a bacterium known for its ability to produce acetone, butanol, and ethanol through fermentation of several carbohydrates. This novel glycoside hydrolase of family 64 (GH64), which we named glucanallin, is composed of a ßγ-crystallin domain, a GH64 domain, and a carbohydrate-binding module 56 (CBM56). The substrates of GH64, ß-1,3-glucans, are the targets for industrial biofuel production due to their plenitude. We have examined the Ca2+-binding properties of this protein, assayed its enzymatic activity, and analyzed the structural features of the ß-1,3-glucanase domain through its high-resolution crystal structure. The reaction products resulting from the enzyme reaction of glucanallin reinforce the mixed nature of GH64 enzymes, in contrast to the prevailing notion of them being an exotype. Upon disabling Ca2+ binding and comparing different domain combinations, we demonstrate that the ßγ-crystallin domain in glucanallin acts as a Ca2+ sensor and enhances the glycolytic activity of glucanallin through Ca2+ binding. We also compare the structural peculiarities of this new member of the GH64 family to two previously studied members.IMPORTANCE We have biochemically and structurally characterized a novel glucanase from the less studied GH64 family in a bacterium significant for fermentation of carbohydrates into biofuels. This enzyme displays a peculiar property of being distally modulated by Ca2+ via assistance from a neighboring ßγ-crystallin domain, likely through changes in the domain interface. In addition, this enzyme is found to be optimized for functioning in an acidic environment, which is in line with the possibility of its involvement in biofuel production. Multiple occurrences of a similar domain architecture suggest that such a "ßγ-crystallination"-mediated Ca2+ sensitivity may be widespread among bacterial proteins.


Subject(s)
Bacterial Proteins/chemistry , Calcium-Binding Proteins/chemistry , Calcium/chemistry , Clostridium beijerinckii/enzymology , Glycoside Hydrolases/chemistry , beta-Crystallins/chemistry , gamma-Crystallins/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Calcium/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cloning, Molecular , Clostridium beijerinckii/chemistry , Clostridium beijerinckii/genetics , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Fermentation , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Kinetics , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , beta-Crystallins/genetics , beta-Crystallins/metabolism , beta-Glucans/chemistry , beta-Glucans/metabolism , gamma-Crystallins/genetics , gamma-Crystallins/metabolism
17.
Mol Microbiol ; 110(6): 955-972, 2018 12.
Article in English | MEDLINE | ID: mdl-30216631

ABSTRACT

We describe a set of proteins in which a ßγ-crystallin domain pairs with an Ig-like domain, and which are confined to microbes, like bacteria, slime molds and fungi. DdCAD-1 (Ca2+ -dependent cell adhesion molecule-1) and abundant perithecial protein (APP) represent this class of molecules. Using the crystal structure of APP-NTD (N-terminal domain of APP), we describe its mode of Ca2+ binding and provide a generalized theme for correct identification of the Ca2+ -binding site within this class of molecules. As a common feature, one of the two Ca2+ -binding sites is non-functional in the ßγ-crystallin domains of these proteins. While APP-NTD binds Ca2+ with a micromolar affinity which is comparable to DdCAD-1, APP surprisingly does not bind Ca2+ . Crystal structures of APP and Ca2+ -bound APP-NTD reveal that the interface interactions in APP render its Ca2+ -binding site inoperative. Thus, heterodomain association provides a novel mode of Ca2+ -binding regulation in APP. Breaking the interface interactions (mutating Asp30Ala, Leu132Ala and Ile135Ala) or separation from the Ig-like domain removes the constraints upon the required conformational transition and enables the ßγ-crystallin domain to bind Ca2+ . In mechanistic detail, our work demonstrates an interdomain interface adapted to distinct functional niches in APP and its homolog DdCAD-1.


Subject(s)
Bacterial Proteins/chemistry , Calcium-Binding Proteins/chemistry , Fungal Proteins/chemistry , Neurospora crassa/metabolism , Protein Interaction Domains and Motifs , beta-Crystallins/chemistry , Binding Sites , Immunoglobulin Domains , Models, Molecular , Protein Structure, Tertiary , gamma-Crystallins/chemistry
18.
Elife ; 72018 08 09.
Article in English | MEDLINE | ID: mdl-30091703

ABSTRACT

D-aminoacyl-tRNA deacylase (DTD) acts on achiral glycine, in addition to D-amino acids, attached to tRNA. We have recently shown that this activity enables DTD to clear non-cognate Gly-tRNAAla with 1000-fold higher efficiency than its activity on Gly-tRNAGly, indicating tRNA-based modulation of DTD (Pawar et al., 2017). Here, we show that tRNA's discriminator base predominantly accounts for this activity difference and is the key to selection by DTD. Accordingly, the uracil discriminator base, serving as a negative determinant, prevents Gly-tRNAGly misediting by DTD and this protection is augmented by EF-Tu. Intriguingly, eukaryotic DTD has inverted discriminator base specificity and uses only G3•U70 for tRNAGly/Ala discrimination. Moreover, DTD prevents alanine-to-glycine misincorporation in proteins rather than only recycling mischarged tRNAAla. Overall, the study reveals the unique co-evolution of DTD and discriminator base, and suggests DTD's strong selection pressure on bacterial tRNAGlys to retain a pyrimidine discriminator code.


Subject(s)
Aminoacyltransferases/metabolism , Escherichia coli/metabolism , Glycine/metabolism , Protein Biosynthesis , RNA, Transfer, Ala/metabolism , RNA, Transfer, Gly/metabolism , Animals , Escherichia coli/enzymology , Mice
19.
Curr Opin Struct Biol ; 53: 107-114, 2018 12.
Article in English | MEDLINE | ID: mdl-30121401

ABSTRACT

The contemporary `RNA-protein world' is exemplified by close associations between many RNAs and proteins which are necessary to carry out important biological processes. DTD-like fold, which is involved in translational proofreading, represents such RNA-protein complexes (RNPCs). Interestingly, it interacts with the substrates in the active site mostly through the main chain, and side chains are dispensable for both substrate specificity and catalysis. It functions at the RNA-protein interface to perform RNA-based catalysis using the 2'-OH of adenosine-76 of tRNA. Such catalytic RNPCs as the DTD-like fold also indicate the probable evolutionary trajectory for the transition from RNA-mediated catalysis to protein-based catalysis.


Subject(s)
RNA, Transfer/metabolism , RNA-Binding Proteins/metabolism , Animals , Biocatalysis , Catalytic Domain , Cricetinae , RNA, Transfer, Amino Acyl/metabolism , Ribonucleases/metabolism , Ribosomes/metabolism , Spliceosomes/metabolism , Substrate Specificity
20.
Nat Commun ; 9(1): 511, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29410408

ABSTRACT

D-aminoacyl-tRNA deacylase (DTD), a bacterial/eukaryotic trans-editing factor, removes D-amino acids mischarged on tRNAs and achiral glycine mischarged on tRNAAla. An invariant cross-subunit Gly-cisPro motif forms the mechanistic basis of L-amino acid rejection from the catalytic site. Here, we present the identification of a DTD variant, named ATD (Animalia-specific tRNA deacylase), that harbors a Gly-transPro motif. The cis-to-trans switch causes a "gain of function" through L-chiral selectivity in ATD resulting in the clearing of L-alanine mischarged on tRNAThr(G4•U69) by eukaryotic AlaRS. The proofreading activity of ATD is conserved across diverse classes of phylum Chordata. Animalia genomes enriched in tRNAThr(G4•U69) genes are in strict association with the presence of ATD, underlining the mandatory requirement of a dedicated factor to proofread tRNA misaminoacylation. The study highlights the emergence of ATD during genome expansion as a key event associated with the evolution of Animalia.


Subject(s)
Alanine/chemistry , Aminoacyltransferases/chemistry , RNA, Transfer, Amino Acyl/chemistry , Threonine/chemistry , Transfer RNA Aminoacylation/genetics , Alanine/genetics , Alanine/metabolism , Amino Acid Sequence , Aminoacyltransferases/genetics , Aminoacyltransferases/metabolism , Animals , Apicomplexa/genetics , Apicomplexa/metabolism , Bacteria/genetics , Bacteria/metabolism , Binding Sites , Biological Evolution , Cloning, Molecular , Crystallography, X-Ray , Gene Expression , Humans , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , RNA, Transfer, Amino Acyl/genetics , RNA, Transfer, Amino Acyl/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Threonine/genetics , Threonine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...