Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38078816

ABSTRACT

To benefit high-power interferometry and the creation of low-noise light sources, we develop a simple lead-compensated photodetector enabling quantum-limited readout from 0.3 to 10 mW and 10 kΩ gain from 85 Hz to 35 MHz, with a noise equivalent power of 9 pW/Hz. Feeding the detector output back to an intensity modulator, we suppress the classical amplitude noise of a commercial 1550 nm fiber laser to the shot noise limit over a bandwidth of 700 Hz-200 kHz, observing no degradation to its (nominally ∼100 Hz) linewidth.

2.
Phys Med Biol ; 68(12)2023 06 15.
Article in English | MEDLINE | ID: mdl-37230081

ABSTRACT

Objective.GEANT4-DNA can simulate radiation chemical yield (G-value) for radiolytic species such as the hydrated electron (eaq-) with the independent reaction times (IRT) method, however, only at room temperature and neutral pH. This work aims to modify the GEANT4-DNA source code to enable the calculation ofG-values for radiolytic species at different temperatures and pH values.Approach.In the GEANT4-DNA source code, values of chemical parameters such as reaction rate constant, diffusion coefficient, Onsager radius, and water density were replaced by corresponding temperature-dependent polynomials. The initial concentration of hydrogen ion (H+)/hydronium ion (H3O+) was scaled for a desired pH using the relationship pH = -log10[H+]. To validate our modifications, two sets of simulations were performed. (A) A water cube with 1.0 km sides and a pH of 7 was irradiated with an isotropic electron source of 1 MeV. The end time was 1µs. The temperatures varied from 25 °C to 150 °C. (B) The same setup as (A) was used, however, the temperature was set to 25 °C while the pH varied from 5 to 9. The results were compared with published experimental and simulated work.Main results.The IRT method in GEANT4-DNA was successfully modified to simulateG-values for radiolytic species at different temperatures and pH values. Our temperature-dependent results agreed with experimental data within 0.64%-9.79%, and with simulated data within 3.52%-12.47%. The pH-dependent results agreed well with experimental data within 0.52% to 3.19% except at a pH of 5 (15.99%) and with simulated data within 4.40%-5.53%. The uncertainties were below ±0.20%. Overall our results agreed better with experimental than simulation data.Significance.Modifications in the GEANT4-DNA code enabled the calculation ofG-values for radiolytic species at different temperatures and pH values.


Subject(s)
Linear Energy Transfer , Models, Chemical , Temperature , Monte Carlo Method , Protons , Hydrogen-Ion Concentration , Computer Simulation , DNA , Water
3.
Phys Rev Lett ; 129(6): 063604, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-36018661

ABSTRACT

As the field of optomechanics advances, quadratic dispersive coupling (QDC) represents an increasingly feasible path toward qualitatively new functionality. However, the leading QDC geometries generate linear dissipative coupling and an associated quantum radiation force noise that is detrimental to QDC applications. Here, we propose a simple geometry that dramatically reduces this noise without altering the QDC strength. We identify optimal regimes of operation, and discuss advantages within the examples of optical levitation and nondestructive phonon measurement.

4.
Opt Express ; 28(23): 33823-33829, 2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182862

ABSTRACT

It is prohibitively expensive to deposit customized dielectric coatings on individual optics. One solution is to batch-coat many optics with extra dielectric layers, then remove layers from individual optics as needed. Here we present a low-cost, single-step, monitored wet etch technique for reliably removing individual SiO2 and Ta2O5 dielectric layers, in this case from a high-reflectivity fiber mirror. By immersing in acid and monitoring off-band reflected light, we show it is straightforward to iteratively (or continuously) remove six bilayers. At each stage, we characterize the coating performance with a Fabry-Pérot cavity, observing the expected stepwise decrease in finesse from 92,000 ± 3,000 to 3, 950 ± 50, finding no evidence of added optical losses. The etch also removes the fiber's sidewall coating after a single bilayer, and, after six bilayers, confines the remaining coating to a 60-µm-diameter pedestal at the center of the fiber tip. Vapor etching above the solution produces a tapered "pool cue" cladding profile, reducing the fiber diameter (nominally 125 µm) to 95 µm at an angle of ∼0.3° near the tip. Finally, we note that the data generated by this technique provides a sensitive estimate of the layers' optical depths. This technique could be readily adapted to free-space optics and other coatings.

5.
Opt Express ; 27(18): 25731-25748, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31510440

ABSTRACT

We introduce a passively-aligned, flexure-tuned cavity optomechanical system in which a membrane is positioned microns from one end mirror of a Fabry-Perot optical cavity. By displacing the membrane through gentle flexure of its silicon supporting frame (i.e., to ∼80 m radius of curvature (ROC)), we gain access to the full range of available optomechanical couplings, finding also that the optical spectrum exhibits none of the abrupt discontinuities normally found in "membrane-in-the-middle" (MIM) systems. More aggressive flexure (3 m ROC) enables >15 µm membrane travel, milliradian tilt tuning, and a wavelength-scale (1.64 ± 0.78 µm) membrane-mirror separation. We also provide a complete set of analytical expressions for this system's leading-order dispersive and dissipative optomechanical couplings. Notably, this system can potentially generate orders of magnitude larger linear dissipative or quadratic dispersive strong coupling parameters than is possible with a MIM system. Additionally, it can generate the same purely quadratic dispersive coupling as a MIM system, but with significantly suppressed linear dissipative back-action (and force noise).

6.
Nano Lett ; 18(10): 6494-6499, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30212215

ABSTRACT

The point-like nature and exquisite magnetic field sensitivity of the nitrogen vacancy (NV) center in diamond can provide information about the inner workings of magnetic nanocircuits in complement with traditional transport techniques. Here, we use a single NV in bulk diamond to probe the stray field of a ferromagnetic nanowire controlled by spin transfer (ST) torques. We first report an unambiguous measurement of ST tuned, parametrically driven, large-amplitude magnetic oscillations. At the same time, we demonstrate that such magnetic oscillations alone can directly drive NV spin transitions, providing a potential new means of control. Finally, we use the NV as a local noise thermometer, observing strong ST damping of the stray field noise, consistent with magnetic cooling from room temperature to ∼150 K.

7.
Opt Express ; 25(2): 1582-1597, 2017 Jan 23.
Article in English | MEDLINE | ID: mdl-28158040

ABSTRACT

We present a robust sideband laser locking technique ideally suited for applications requiring low probe power and heterodyne readout. By feeding back to a high-bandwidth voltage-controlled oscillator, we lock a first-order phase-modulation sideband to a high-finesse Fabry-Perot cavity in ambient conditions, achieving a closed-loop bandwidth of 3.5 MHz (with a single integrator) limited fundamentally by the signal delay. The measured transfer function of the closed loop agrees with a simple model based on ideal system components, and from this we suggest a modified design that should achieve a bandwidth exceeding 6 MHz with a near-causally limited feedback gain as high as 4 × 107 at 1 kHz. The off-resonance optical carrier enables alignment-free heterodyne readout, alleviating the need for additional lasers or optical modulators.

8.
Opt Lett ; 41(24): 5624-5627, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27973474

ABSTRACT

Photonic crystal reflector (PCR) membranes exhibit a resonantly enhanced normal-incidence reflectivity. Many applications require this resonance to occur at a specific wavelength, however, imposing geometrical tolerances that are not reliably achieved with standard nanolithography. Here we finely tune the resonant wavelength of a freestanding Si3N4 PCR membrane with iterative hydrofluoric acid etches, achieving a 57 nm thin crystal with a resonant wavelength 0.15 nm (0.04 linewidths) away from our target (1550 nm). This thin crystal exhibits a broader, shallower transmission dip than its simulated response to plane waves, and we identify two causes related to beam collimation. Finally, we present a series of simulations and general design considerations for realizing robust, high-reflectivity resonances.

SELECTION OF CITATIONS
SEARCH DETAIL
...