Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Neuroradiol ; 34(1): 189-199, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37831106

ABSTRACT

OBJECTIVE: To evaluate diagnostic image quality of ultra-high-resolution computed tomography angiography (UHR-CTA) in neurovascular imaging as compared to normal resolution CT-angiography (NR-CTA). MATERIAL AND METHODS: In this retrospective single-center study brain and neck CT-angiography was performed using an ultra-high-resolution computed tomography scanner (n = 82) or a normal resolution CT scanner (NR-CTA; n = 73). Ultra-high-resolution images were reconstructed with a 1024â€¯× 1024 matrix and a slice thickness of 0.25 mm, whereas NR-CT images were reconstructed with a 512â€¯× 512 matrix and a slice thickness of 0.5 mm. Three blinded neuroradiologists assessed overall image quality, artifacts, image noise, overall contrast and diagnostic confidence using a 4-point Likert scale. Furthermore, the visualization and delineation of supra-aortic arteries with an emphasis on the visualization of small intracerebral vessels was assessed using a cerebral vascular score, also utilizing a 4-point Likert scale. Quantitative analyses included signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), noise and the steepness of gray value transition. Radiation exposure was determined by comparison of computed tomography dose index (CTDIvol), dose length product (DLP) and mean effective dose. Interrater agreement was evaluated via determining Fleiss-Kappa. RESULTS: Ultra-high-resolution CT-angiography (UHR-CTA) yielded excellent image quality with superior quantitative (SNR: p < 0.001, CNR: p < 0.001, steepness of gray value transition: p < 0.001) and qualitative results (overall image quality: 4 (Inter quartile range (IQR) = 4-4); p < 0.001, diagnostic confidence: 4 (IQR = 4-4); p < 0.001) compared to NR-CT (overall image quality: 3 (IQR = 3-3), diagnostic confidence: 3 (IQR = 3-4)). Furthermore, UHR-CT enabled significantly superior delineation and visualization of all vascular segments, from proximal extracranial vessels to the smallest peripheral cerebral branches (e.g. , UHR-CTA PICA: 4 (3-4) vs. NR-CTA PICA: 3 (2-3); UHR-CTA P4: 4 (IQR = 3-4) vs. NR-CTA P4: 2 (IQR = 2-3); UHR-CTA M4: 4 (IQR = 4-4) vs. NR-CTA M4: 3 (IQR = 2-3); UHR-CTA A4: 4 (IQR = 3-4) vs. NR-CTA A4: 2 (IQR = 2-3); all p < 0.001). Noteworthy, a reduced mean effective dose was observed when applying UHR-CT (NR-CTA: 1.8 ± 0.3 mSv; UHR-CTA: 1.5 ± 0.5 mSv; p < 0.001). CONCLUSION: Ultra-high-resolution CT-angiography improves image quality in neurovascular imaging allowing the depiction and evaluation of small peripheral cerebral arteries. It may thus improve the detection of pathologies in small cerebrovascular lesions and the resulting diagnosis.


Subject(s)
Computed Tomography Angiography , Tomography, X-Ray Computed , Humans , Computed Tomography Angiography/methods , Retrospective Studies , Tomography, X-Ray Computed/methods , Angiography , Signal-To-Noise Ratio , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted/methods
2.
Acad Radiol ; 31(4): 1594-1604, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37821348

ABSTRACT

RATIONALE AND OBJECTIVES: Ruptured intracranial aneurysms (IAs) are the leading cause for atraumatic subarachnoid hemorrhage. In case of aneurysm rupture, patients may face life-threatening complications and require aneurysm occlusion. Detection of the aneurysm in computed tomography (CT) imaging is therefore essential for patient outcome. This study provides an evaluation of the diagnostic accuracy of Ultra-High-Resolution Computed Tomography Angiography (UHR-CTA) and Normal-Resolution Computed Tomography Angiography (NR-CTA) concerning IA detection and characterization. MATERIALS AND METHODS: Consecutive patients with atraumatic subarachnoid hemorrhage who received Digital Subtraction Angiography (DSA) and either UHR-CTA or NR-CTA were retrospectively included. Three readers evaluated CT-Angiography regarding image quality, diagnostic confidence and presence of IAs. Sensitivity and specificity were calculated on patient-level and segment-level with reference standard DSA-imaging. CTA patient radiation exposure (effective dose) was compared. RESULTS: One hundred and eight patients were identified (mean age = 57.8 ±â€¯14.1 years, 65 women). UHR-CTA revealed significantly higher image quality and diagnostic confidence (P < 0.001) for all readers and significantly lower effective dose (P < 0.001). Readers correctly classified ≥55/56 patients on UHR-CTA and ≥44/52 patients on NR-CTA. We noted significantly higher patient-level sensitivity for UHR-CTA compared to NR-CTA for all three readers (reader 1: 41/41 [100%] vs. 28/34 [82%], reader 2: 41/41 [100%] vs. 30/34 [88%], reader 3: 41/41 [100%] vs. 30/34 [88%], P ≤ 0.04). Segment-level analysis also revealed significantly higher sensitivity for UHR-CTA compared to NR-CTA for all three readers (reader 1: 47/49 [96%] vs. 34/45 [76%], reader 2: 47/49 [96%] vs. 37/45 [82%], reader 3: 48/49 [98%] vs. 37/45 [82%], P ≤ 0.04). Specificity was comparable for both techniques. CONCLUSION: We found Ultra-High-Resolution CT-Angiography to provide higher sensitivity than Normal-Resolution CT-Angiography for the detection of intracranial aneurysms in patients with aneurysmal subarachnoid hemorrhage while improving image quality and reducing patient radiation exposure.


Subject(s)
Aneurysm, Ruptured , Intracranial Aneurysm , Subarachnoid Hemorrhage , Humans , Female , Adult , Middle Aged , Aged , Subarachnoid Hemorrhage/diagnostic imaging , Subarachnoid Hemorrhage/complications , Intracranial Aneurysm/complications , Intracranial Aneurysm/diagnostic imaging , Computed Tomography Angiography/methods , Retrospective Studies , Cerebral Angiography/methods , Tomography, X-Ray Computed/methods , Angiography, Digital Subtraction/methods , Sensitivity and Specificity , Aneurysm, Ruptured/complications , Aneurysm, Ruptured/diagnostic imaging
3.
Diagnostics (Basel) ; 13(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36832109

ABSTRACT

PURPOSE: To evaluate the effects of single-energy metal artifact reduction (SEMAR) on image quality of ultra-high-resolution CT-angiography (UHR-CTA) with intracranial implants after aneurysm treatment. METHODS: Image quality of standard and SEMAR-reconstructed UHR-CT-angiography images of 54 patients who underwent coiling or clipping was retrospectively evaluated. Image noise (i.e., index for metal-artifact strength) was analyzed in close proximity to and more distally from the metal implant. Frequencies and intensities of metal artifacts were additionally measured and intensity-differences between both reconstructions were compared in different frequencies and distances. Qualitative analysis was performed by two radiologists using a four-point Likert-scale. All measured results from both quantitative and qualitative analysis were then compared between coils and clips. RESULTS: Metal artifact index (MAI) and the intensity of coil-artifacts were significantly lower in SEMAR than in standard CTA in close vicinity to and more distally from the coil-package (p < 0.001, each). MAI and the intensity of clip-artifacts were significantly lower in close vicinity (p = 0.036; p < 0.001, respectively) and more distally from the clip (p = 0.007; p < 0.001, respectively). In patients with coils, SEMAR was significantly superior in all qualitative categories to standard images (p < 0.001), whereas in patients with clips, only artifacts were significantly less (p < 0.05) for SEMAR. CONCLUSION: SEMAR significantly reduces metal artifacts in UHR-CT-angiography images with intracranial implants and improves image quality and diagnostic confidence. SEMAR effects were strongest in patients with coils, whereas the effects were minor in patients with titanium-clips due to the absent of or minimal artifacts.

SELECTION OF CITATIONS
SEARCH DETAIL
...