Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Int J Biol Macromol ; 256(Pt 2): 128489, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043667

ABSTRACT

Type I collagen is commonly recognized as the gold standard biomaterial for the manufacturing of medical devices for health-care related applications. In recent years, with the final aim of developing scaffolds with optimal bioactivity, even more studies focused on the influence of processing parameters on collagen properties, since processing can strongly affect the architecture of collagen at various length scales and, consequently, scaffolds macroscopic performances. The ability to finely tune scaffold properties in order to closely mimic the tissues' hierarchical features, preserving collagen's natural conformation, is actually of great interest. In this work, the effect of the pepsin-based extraction step on the material final properties was investigated. Thus, the physico-chemical properties of fibrillar type I collagens upon being extracted under various conditions were analyzed in depth. Correlations of collagen structure at the supramolecular scale with its microstructural properties were done, confirming the possibility of tuning rheological, viscoelastic and degradation properties of fibrillar type I collagen.


Subject(s)
Collagen Type I , Pepsin A , Horses , Animals , Pepsin A/metabolism , Collagen/chemistry , Fibrillar Collagens/chemistry , Tendons/chemistry
2.
Cell Rep Med ; 4(10): 101235, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37852177

ABSTRACT

The rising prevalence of obesity and metabolic disorders worldwide highlights the urgent need to find new long-term and clinically meaningful weight-loss therapies. Here, we evaluate the therapeutic potential and the mechanism of action of a biomimetic cellulose-based oral superabsorbent hydrogel (OSH). Treatment with OSH exerts effects on intestinal tissue and gut microbiota composition, functioning like a protective dynamic exoskeleton. It protects from gut barrier permeability disruption and induces rapid and consistent changes in the gut microbiota composition, specifically fostering Akkermansia muciniphila expansion. The mechanobiological, physical, and chemical structures of the gel are required for A. muciniphila growth. OSH treatment induces weight loss and reduces fat accumulation, in both preventative and therapeutic settings. OSH usage also prevents liver steatosis, immune infiltration, and fibrosis, limiting the progression of non-alcoholic fatty liver disease. Our work shows the potential of using OSH as a non-systemic mechanobiological approach to treat metabolic syndrome and its comorbidities.


Subject(s)
Exoskeleton Device , Non-alcoholic Fatty Liver Disease , Humans , Hydrogels/therapeutic use , Biomimetics , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/drug therapy , Obesity/prevention & control , Obesity/drug therapy
3.
Materials (Basel) ; 16(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37445069

ABSTRACT

Type I collagen physiological scaffold for tissue regeneration is considered one of the widely used biomaterials for tissue engineering and medical applications. It is hierarchically organized: five laterally staggered molecules are packed within fibrils, arranged into fascicles and bundles. The structural organization is correlated to the direction and intensity of the forces which can be loaded onto the tissue. For a tissue-specific regeneration, the required macro- and microstructure of a suitable biomaterial has been largely investigated. Conversely, the function of multiscale structural integrity has been much less explored but is crucial for scaffold design and application. In this work, collagen was extracted from different animal sources with protocols that alter its structure. Collagen of tendon shreds excised from cattle, horse, sheep and pig was structurally investigated by wide- and small-angle X-ray scattering techniques, at both molecular and supramolecular scales, and thermo-mechanically with thermal and load-bearing tests. Tendons were selected because of their resistance to chemical degradation and mechanical stresses. The multiscale structural integrity of tendons' collagen was studied in relation to the animal source, anatomic location and source for collagen extraction.

4.
ACS Omega ; 8(23): 20708-20713, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37332801

ABSTRACT

Water pollution is a major concern in our modern age. The contamination of water, as a valuable and often limited resource, affects both the environment and human health. Industrial processes such as food, cosmetics, and pharmaceutical production also contribute to this problem. Vegetable oil production, for example, generates a stable oil/water emulsion containing 0.5-5% oil, which presents a difficult waste disposal issue. Conventional treatment methods based on aluminum salts generate hazardous waste, highlighting the need for green and biodegradable coagulant agents. In this study, the efficacy of commercial chitosan, a natural polysaccharide derived from chitin deacetylation, has been evaluated as a coagulation agent for vegetable oil emulsions. The effect of commercial chitosan was assessed in relation to different surfactants (anionic, cationic, and nonpolar) and pH levels. The results demonstrate that chitosan is effective at concentrations as low as 300 ppm and can be reused, providing a cost-effective and sustainable solution for oil removal. The flocculation mechanism relies on the desolubilization of the polymer, which acts as a net to entrap the emulsion, rather than solely relying on electrostatic interactions with the particles. This study highlights the potential of chitosan as a natural and ecofriendly alternative to conventional coagulants for the remediation of oil-contaminated water.

5.
Pharmaceutics ; 15(5)2023 May 15.
Article in English | MEDLINE | ID: mdl-37242741

ABSTRACT

Gelatin is a highly versatile natural polymer, which is widely used in healthcare-related sectors due to its advantageous properties, such as biocompatibility, biodegradability, low-cost, and the availability of exposed chemical groups. In the biomedical field, gelatin is used also as a biomaterial for the development of drug delivery systems (DDSs) due to its applicability to several synthesis techniques. In this review, after a brief overview of its chemical and physical properties, the focus is placed on the commonly used techniques for the development of gelatin-based micro- or nano-sized DDSs. We highlight the potential of gelatin as a carrier of many types of bioactive compounds and its ability to tune and control select drugs' release kinetics. The desolvation, nanoprecipitation, coacervation, emulsion, electrospray, and spray drying techniques are described from a methodological and mechanistic point of view, with a careful analysis of the effects of the main variable parameters on the DDSs' properties. Lastly, the outcomes of preclinical and clinical studies involving gelatin-based DDSs are thoroughly discussed.

6.
Gels ; 9(4)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37102922

ABSTRACT

Bio-based polymers are attracting great interest due to their potential for several applications in place of conventional polymers. In the field of electrochemical devices, the electrolyte is a fundamental element that determines their performance, and polymers represent good candidates for developing solid-state and gel-based electrolytes toward the development of full-solid-state devices. In this context, the fabrication and characterization of uncrosslinked and physically cross-linked collagen membranes are reported to test their potential as a polymeric matrix for the development of a gel electrolyte. The evaluation of the membrane's stability in water and aqueous electrolyte and the mechanical characterization demonstrated that cross-linked samples showed a good compromise in terms of water absorption capability and resistance. The optical characteristics and the ionic conductivity of the cross-linked membrane, after overnight dipping in sulfuric acid solution, demonstrated the potential of the reported membrane as an electrolyte for electrochromic devices. As proof of concept, an electrochromic device was fabricated by sandwiching the membrane (after sulfuric acid dipping) between a glass/ITO/PEDOT:PSS substrate and a glass/ITO/SnO2 substrate. The results in terms of optical modulation and kinetic performance of such a device demonstrated that the reported cross-linked collagen membrane could represent a valid candidate as a water-based gel and bio-based electrolyte for full-solid-state electrochromic devices.

7.
Pharmaceutics ; 15(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36839801

ABSTRACT

Vascularization is a highly conserved and considerably complex and precise process that is finely driven by endogenous regulatory processes at the tissue and systemic levels. However, it can reveal itself to be slow and inadequate for tissue repair and regeneration consequent to severe lesions/damages. Several biomaterial-based strategies were developed to support and enhance vasculogenesis by supplying pro-angiogenic agents. Several approaches were adopted to develop effective drug delivery systems for the controlled release of a huge variety of compounds. In this work, a microparticulate system was chosen to be loaded with the essential amino acid L-lysine, a molecule that has recently gained interest due to its involvement in pro-angiogenic, pro-regenerative, and anti-inflammatory mechanisms. Poly (lactic-co-glycolic acid), the most widely used FDA-approved biodegradable synthetic polymer for the development of drug delivery systems, was chosen due to its versatility and ability to promote neovascularization and wound healing. This study dealt with the development and the effectiveness evaluation of a PLGA-based microparticulate system for the controlled release of L-lysine. Therefore, in order to maximize L-lysine encapsulation efficiency and tune its release kinetics, the microparticle synthesis protocol was optimized by varying some processing parameters. All developed formulations were characterized from a morphological and physicochemical point of view. The optimized formulation was further characterized via the evaluation of its preliminary biological efficacy in vitro. The cellular and molecular studies revealed that the L-lysine-loaded PLGA microparticles were non-toxic, biocompatible, and supported cell proliferation and angiogenesis well by stimulating the expression of pro-angiogenic genes such as metalloproteinase-9, focal adhesion kinases, and different growth factors. Thus, this work showed the potential of delivering L-lysine encapsulated in PLGA microparticles as a cost-effective promoter system for angiogenesis enhancement and rapid healing.

8.
Polymers (Basel) ; 15(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36850304

ABSTRACT

Soft tissues diseases significantly affect patients quality of life and usually require targeted, costly and sometimes constant interventions. With the average lifetime increase, a proportional increase of age-related soft tissues diseases has been witnessed. Due to this, the last two decades have seen a tremendous demand for minimally invasive one-step resolutive procedures. Intensive scientific and industrial research has led to the recognition of injectable formulations as a new advantageous approach in the management of complex diseases that are challenging to treat with conventional strategies. Among them, collagen-based products are revealed to be one of the most promising among bioactive biomaterials-based formulations. Collagen is the most abundant structural protein of vertebrate connective tissues and, because of its structural and non-structural role, is one of the most widely used multifunctional biomaterials in the health-related sectors, including medical care and cosmetics. Indeed, collagen-based formulations are historically considered as the "gold standard" and from 1981 have been paving the way for the development of a new generation of fillers. A huge number of collagen-based injectable products have been approved worldwide for clinical use and have routinely been introduced in many clinical settings for both aesthetic and regenerative surgery. In this context, this review article aims to be an update on the clinical outcomes of approved collagen-based injectables for both aesthetic and regenerative medicine of the last 20 years with an in-depth focus on their safety and effectiveness for the treatment of diseases of the integumental, gastrointestinal, musculoskeletal, and urogenital apparatus.

9.
Int J Mol Sci ; 24(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36768265

ABSTRACT

In the last two decades, fisheries and fish industries by-products have started to be recovered for the extraction of type I collagen because of issues related to the extraction of traditional mammalian tissues. In this work, special attention has been paid to by-products from fish bred in aquaponic plants. The valorization of aquaponic fish wastes as sources of biopolymers would make the derived materials eco-friendlier and attractive in terms of profitability and cost effectiveness. Among fish species, Nile Tilapia is the second-most farmed species in the world and its skin is commonly chosen as a collagen extraction source. However, to the best of our knowledge, no studies have been carried out to investigate, in depth, the age-related differences in fish skin with the final aim of selecting the most advantageous fish size for collagen extraction. In this work, the impact of age on the structural and compositional properties of Tilapia skin was evaluated with the aim of selecting the condition that best lends itself to the extraction of type I collagen for biomedical applications, based on the known fact that the properties of the original tissue have a significant impact on those of the final product. Performed analysis showed statistically significant age-related differences. In particular, an increase in skin thickness (+110 µm) and of wavy-like collagen fiber bundle diameter (+3 µm) besides their organization variation was observed with age. Additionally, a preferred collagen molecule orientation along two specific directions was revealed, with a higher fiber orientation degree according to age. Thermal analysis registered a shift of the endothermic peak (+1.7 °C) and an increase in the enthalpy (+3.3 J/g), while mechanical properties were found to be anisotropic, with an age-dependent brittle behavior. Water (+13%) and ash (+0.6%) contents were found to be directly proportional with age, as opposed to protein (-8%) and lipid (-10%) contents. The amino acid composition revealed a decrease in the valine, leucine, isoleucine, and threonine content and an increase in proline and hydroxyproline. Lastly, fatty acids C14:0, C15:0, C16:1, C18:2n6c, C18:3n6, C18:0, C20:3n3, and C23:0 were revealed to be upregulated, while C18:1n9c was downregulated with age.


Subject(s)
Cichlids , Tilapia , Animals , Tilapia/metabolism , Cichlids/metabolism , Collagen Type I/metabolism , Fatty Acids/metabolism , Collagen/metabolism , Mammals
10.
Molecules ; 28(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36677887

ABSTRACT

In the present study, we have produced a sodium carboxymethylcellulose (CMC) hydrogel from a bacterial cellulose etherification reaction with chloroacetic acid in an alkaline medium. Bacterial cellulose (BC) was synthesized via economical and environmentally friendly methods using the Gluconacetobacter xylinus bacterium. After purification, freeze-drying, and milling, BC microparticles were dispersed in NaOH solution for different time periods before the etherification reaction. This has allowed the understanding of the alkalinization effect on BC modification. All synthesized CMC were soluble in water, and FTIR and XRD analyses confirmed the etherification reaction. The bath of BC in NaOH solution affects both molecular weight and degree of substitution. SEM analysis revealed the change of BC microstructure from fibrous-like to a smooth, uniform structure. The CMC-0 h allowed the production of crosslinked hydrogel after dehydrothermal treatment. Such hydrogel has been characterized rheologically and has shown a water absorption of 35 times its original weight. The optimization of the CMC produced from BC could pave the way for the production of ultrapure hydrogel to be applied in the healthcare and pharmaceutical industry.


Subject(s)
Carboxymethylcellulose Sodium , Hydrogels , Carboxymethylcellulose Sodium/chemistry , Cellulose/chemistry , Sodium Hydroxide , Water
11.
Obes Sci Pract ; 8(3): 363-370, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35664250

ABSTRACT

Long-term therapeutic benefit of treatments for weight management in patients with overweight (also termed preobesity) or obesity may be limited by variable safety, tolerability, and efficacy profiles, and patient adherence to treatment regimens. There is a medical need for nonsystemic treatments that promote weight loss in patients with overweight or early obesity. This report reviews four different approaches of utilizing superabsorbent hydrogel technology for weight management at varying stages of preclinical and clinical development. The first is a nonsystemic, oral superabsorbent hydrogel created from naturally derived building blocks used in foods (cellulose-based), designed to mix homogenously with and change the properties of the ingested meal throughout the gastrointestinal tract (stomach and small intestine). This is the first-in-class to be cleared by the Food and Drug Administration (FDA) to aid in weight-management for adults with BMI of 25-40 kg/m2 in conjunction with diet and exercise. In contrast, the other three approaches in development utilize superabsorbent hydrogel technologies to support an intragastric balloon-like structure, solely occupying space in the stomach and displacing the meal: (1) a pufferfish-inspired device; (2) Epitomee, a pH-sensitive self-expanding hydrogel device; and (3) a light-degradable hydrogel used to control balloon deflation. These new approaches that utilize superabsorbent hydrogel technology offer a wide range of clinical applicability and have the potential to broaden the weight management treatment landscape. Over time, increasing the number of patients treated with superabsorbent hydrogel technologies will provide important information on long-term efficacy and safety.

12.
Polymers (Basel) ; 14(9)2022 May 02.
Article in English | MEDLINE | ID: mdl-35567034

ABSTRACT

Collagen is one of the most widely used biomaterials in health-related sectors. The industrial production of collagen mostly relies on its extraction from mammals, but several issues limited its use. In the last two decades, marine organisms attracted interest as safe, abundant, and alternative source for collagen extraction. In particular, the possibility to valorize the huge quantity of fish industry waste and byproducts as collagen source reinforced perception of fish collagen as eco-friendlier and particularly attractive in terms of profitability and cost-effectiveness. Especially fish byproducts from eco-sustainable aquaponics production allow for fish biomass with additional added value and controlled properties over time. Among fish species, Oreochromis niloticus is one of the most widely bred fish in large-scale aquaculture and aquaponics systems. In this work, type I collagen was extracted from aquaponics-raised Tilapia skin and characterized from a chemical, physical, mechanical, and biological point of view in comparison with a commercially available analog. Performed analysis confirmed that the proprietary process optimized for type I collagen extraction allowed to isolate pure native collagen and to preserve its native conformational structure. Preliminary cellular studies performed with mouse fibroblasts indicated its optimal biocompatibility. All data confirmed the eligibility of the extracted Tilapia-derived native type I collagen as a biomaterial for healthcare applications.

13.
J Biomed Mater Res A ; 110(7): 1372-1385, 2022 07.
Article in English | MEDLINE | ID: mdl-35262240

ABSTRACT

Articular cartilage degeneration is still an unsolved issue owing to its weak repairing capabilities, which usually result in fibrocartilage tissue formation. This fibrous tissue lacks of structural and bio-mechanical properties, degrading over time. Currently, arthroscopic techniques and autologous transplantation are the most used clinical procedures. However, rather than restoring cartilage integrity, these methods only postpone further cartilage deterioration. Therefore, tissue engineering strategies aimed at selecting scaffolds that remarkably support the chondrogenic differentiation of human mesenchymal stem cells (hMSCs) could represent a promising solution, but they are still challenging for researchers. In this study, the influence of two different genipin (Gp) crosslinking routes on collagen (Coll)-based scaffolds in terms of hMSCs chondrogenic differentiation and biomechanical performances was investigated. Three-dimensional (3D) porous Coll scaffolds were fabricated by freeze-drying techniques and were crosslinked with Gp following a "two-step" and an in "bulk" procedure, in order to increase the physico-mechanical stability of the structure. Chondrogenic differentiation efficacy of hMSCs and biomechanical behavior under compression forces through unconfined stress-strain tests were assessed. Coll/Gp scaffolds revealed an isotropic and highly homogeneous pore distribution along with an increase in the stiffness, also supported by the increase in the Coll denaturation temperature (Td  = 57-63°C) and a significant amount of Coll and GAG deposition during the 3 weeks of chondrogenic culture. In particular, the presence of Gp in "bulk" led to a more uniform and homogenous chondral-like matrix deposition by hMSCs if compared to the results obtained from the Gp "two-step" functionalization procedure.


Subject(s)
Cartilage, Articular , Mesenchymal Stem Cells , Cell Differentiation , Cells, Cultured , Chondrogenesis , Collagen/chemistry , Humans , Iridoids , Tissue Engineering/methods , Tissue Scaffolds/chemistry
15.
Materials (Basel) ; 14(24)2021 Dec 12.
Article in English | MEDLINE | ID: mdl-34947245

ABSTRACT

Urethral stenosis is a pathological condition that consists in the narrowing of the urethral lumen because of the formation of scar tissue. Unfortunately, none of the current surgical approaches represent an optimal solution because of the high stricture recurrence rate. In this context, we preliminarily explored the potential of an insoluble type-I collagen from horse tendon as scaffolding material for the development of innovative devices for the regeneration of injured urethral tracts. Non-porous collagen-based substrates were produced and optimized, in terms of crosslinking density of the macromolecular structure, to either provide mechanical properties compliant with the urinary tract physiological stress and better sustain tissue regeneration. The effect of the adopted crosslinking strategy on the protein integrity and on the substrate physical-chemical, mechanical and biological properties was investigated in comparison with a decellularized matrix from porcine small intestinal submucosa (SIS patch), an extensively used xenograft licensed for clinical use in urology. The optimized production protocols allowed the preservation of the type I collagen native structure and the realization of a substrate with appealing end-use properties. The biological response, preliminarily investigated by immunofluorescence experiments on human adult renal stem/progenitor cells until 28 days, showed the formation of a stem-cell monolayer within 14 days and the onset of spheroids within 28 days. These results suggested the great potential of the collagen-based material for the development of scaffolds for urethral plate regeneration and for in vitro cellular studies.

16.
Sci Rep ; 11(1): 21394, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34725434

ABSTRACT

In the treatment of obesity, nutritional and behavioral modifications are difficult to implement and maintain. Since vegetable consumption is a fundamental part of many dietary interventions and daily nutrient requirements, we developed a novel cellulose-based superabsorbent hydrogel (CB-SAH) platform, inspired by the composition and mechanical properties of raw vegetables, as a mechanobiological therapy. The CB-SAHs properties were studied in a simulated gastrointestinal environment, while their impact on gut tissue was investigated by an ex vivo organ culture (EVOC) model. Functional fibers and raw vegetables were used as reference. CB-SAHs demonstrated orders of magnitude higher elasticity in comparison to the tested functional fibers, however performed similar to the tested raw vegetables. Notably, the biomimetic CB-SAHs with elasticity levels similar to raw vegetables showed benefits in preserving and regulating the gut tissue in the EVOC model. Non-systemic oral mechanotherapeutics based on this technology were advanced through clinical studies, with a first product cleared as an aid for weight management in the US and Europe.


Subject(s)
Cellulose/pharmacology , Hydrogels/pharmacology , Obesity/therapy , Adsorption , Animals , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Biomimetics , Cellulose/analogs & derivatives , Elasticity , Humans , Hydrogels/chemistry , Male , Mice, Inbred C57BL , Vegetables/chemistry
17.
Front Bioeng Biotechnol ; 9: 644595, 2021.
Article in English | MEDLINE | ID: mdl-33987173

ABSTRACT

Biological materials found in living organisms, many of which are proteins, feature a complex hierarchical organization. Type I collagen, a fibrous structural protein ubiquitous in the mammalian body, provides a striking example of such a hierarchical material, with peculiar architectural features ranging from the amino acid sequence at the nanoscale (primary structure) up to the assembly of fibrils (quaternary structure) and fibers, with lengths of the order of microns. Collagen plays a dominant role in maintaining the biological and structural integrity of various tissues and organs, such as bone, skin, tendons, blood vessels, and cartilage. Thus, "artificial" collagen-based fibrous assemblies, endowed with appropriate structural properties, represent ideal substrates for the development of devices for tissue engineering applications. In recent years, with the ultimate goal of developing three-dimensional scaffolds with optimal bioactivity able to promote both regeneration and functional recovery of a damaged tissue, numerous studies focused on the capability to finely modulate the scaffold architecture at the microscale and the nanoscale in order to closely mimic the hierarchical features of the extracellular matrix and, in particular, the natural patterning of collagen. All of these studies clearly show that the accurate characterization of the collagen structure at the submolecular and supramolecular levels is pivotal to the understanding of the relationships between the nanostructural/microstructural properties of the fabricated scaffold and its macroscopic performance. Several studies also demonstrate that the selected processing, including any crosslinking and/or sterilization treatments, can strongly affect the architecture of collagen at various length scales. The aim of this review is to highlight the most recent findings on the development of collagen-based scaffolds with optimized properties for tissue engineering. The optimization of the scaffolds is particularly related to the modulation of the collagen architecture, which, in turn, impacts on the achieved bioactivity.

18.
J Biomed Mater Res B Appl Biomater ; 109(9): 1313-1326, 2021 09.
Article in English | MEDLINE | ID: mdl-33427396

ABSTRACT

In the present work, we investigated the potential of novel semi-interpenetrating polymer network (semi-IPN) cryogels, obtained through ultraviolet exposure of aqueous mixtures of poly(ethylene glycol) diacrylate and type I collagen, as tunable off-the-shelf platforms for 3D cancer cell research. We synthesized semi-IPN cryogels with variable collagen amounts (0.1% and 1% w/v) and assessed the effect of collagen on key cryogel properties for cell culture, for example, porosity, degradation rate and mechanical stiffness. Then, we investigated the ability of the cryogels to sustain the long-term growth of two pancreatic ductal adenocarcinoma (PDAC) cell populations, the parenchymal Panc1 cells and their derived cancer stem cells. Results revealed that both cell lines efficiently infiltrated, attached and expanded in the cryogels over a period of 14 days. However, only when grown in the cryogels with the highest collagen concentration, both cell lines reproduced their characteristic growth pattern previously observed in collagen-enriched organotypic cultures, biomimetic of the highly fibrotic PDAC stroma. Cellular preembedding in Matrigel, that is, the classical approach to develop/grow organoids, interfered with an efficient intra-scaffold migration and growth. Although preliminary, these findings highlight the potential of the proposed cryogels as reproducible and tunable cancer cell research platforms.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Collagen/chemistry , Cryogels/chemistry , Polyethylene Glycols/chemistry , Cell Culture Techniques , Cell Proliferation/drug effects , Drug Combinations , Humans , Laminin/chemistry , Mechanical Phenomena , Neoplastic Stem Cells , Porosity , Proteoglycans/chemistry , Structure-Activity Relationship , Surface Properties
19.
J Funct Biomater ; 11(4)2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33139660

ABSTRACT

Type I collagen has always aroused great interest in the field of life-science and bioengineering, thanks to its favorable structural properties and bioactivity. For this reason, in the last five decades it has been widely studied and employed as biomaterial for the manufacture of implantable medical devices. Commonly used sources of collagen are represented by bovine and swine but their applications are limited because of the zoonosis transmission risks, the immune response and the religious constrains. Thus, type-I collagen isolated from horse tendon has recently gained increasing interest as an attractive alternative, so that, although bovine and porcine derived collagens still remain the most common ones, more and more companies started to bring to market a various range of equine collagen-based products. In this context, this work aims to overview the properties of equine collagen making it particularly appealing in medicine, cosmetics and pharmaceuticals, as well as its main biomedical applications and the currently approved equine collagen-based medical devices, focusing on experimental studies and clinical trials of the last 15 years. To the best of our knowledge, this is the first review focusing on the use of equine collagen, as well as on equine collagen-based marketed products for healthcare.

20.
Biology (Basel) ; 9(11)2020 Oct 25.
Article in English | MEDLINE | ID: mdl-33113830

ABSTRACT

The development of nanocomposites with tailored physical-chemical properties, such as nanoparticles containing magnetic iron oxides for manipulating cellular events at distance, implies exciting prospects in biomedical applications for bone tissue regeneration. In this context, this study aims to emphasize the occurrence of differential responsiveness in osteoblast-like cells to different nanocomposites with diverse features: dextran-grafted iron oxide (DM) nanoparticles and their hybrid nano-hydroxyapatite (DM/n-HA) counterpart. Here, responsiveness of cells in the presence of DMs or DM/n-HAs was evaluated in terms of cytoskeletal features. We observed that effects triggered by the DM are no more retained when DM is embedded onto the DM/n-HA nanocomposites. Also, analysis of mRNA level variations of the focal adhesion kinase (FAK), P53 and SLC11A2/DMT1 human genes showed that the DM/n-HA-treated cells retain tracts of physiological responsiveness compared to the DM-treated cells. Overall, a shielding effect by the n-HA component can be assumed, masking the DM's cytotoxic potential, also hinting a modular biomimicry of the nanocomposites respect to the physiological responses of osteoblast-like cells. In this view, the biocompatibility of n-HA together with the magnetic responsiveness of DMs represent an optimized combination of structural with functional features of the DM/n-HA nano-tools for bone tissue engineering, for finely acting within physiological ranges.

SELECTION OF CITATIONS
SEARCH DETAIL
...