Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 24(1): 416, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760676

ABSTRACT

BACKGROUND: Phytophthora root rot, a major constraint in chile pepper production worldwide, is caused by the soil-borne oomycete, Phytophthora capsici. This study aimed to detect significant regions in the Capsicum genome linked to Phytophthora root rot resistance using a panel consisting of 157 Capsicum spp. genotypes. Multi-locus genome wide association study (GWAS) was conducted using single nucleotide polymorphism (SNP) markers derived from genotyping-by-sequencing (GBS). Individual plants were separately inoculated with P. capsici isolates, 'PWB-185', 'PWB-186', and '6347', at the 4-8 leaf stage and were scored for disease symptoms up to 14-days post-inoculation. Disease scores were used to calculate disease parameters including disease severity index percentage, percent of resistant plants, area under disease progress curve, and estimated marginal means for each genotype. RESULTS: Most of the genotypes displayed root rot symptoms, whereas five accessions were completely resistant to all the isolates and displayed no symptoms of infection. A total of 55,117 SNP markers derived from GBS were used to perform multi-locus GWAS which identified 330 significant SNP markers associated with disease resistance. Of these, 56 SNP markers distributed across all the 12 chromosomes were common across the isolates, indicating association with more durable resistance. Candidate genes including nucleotide-binding site leucine-rich repeat (NBS-LRR), systemic acquired resistance (SAR8.2), and receptor-like kinase (RLKs), were identified within 0.5 Mb of the associated markers. CONCLUSIONS: Results will be used to improve resistance to Phytophthora root rot in chile pepper by the development of Kompetitive allele-specific markers (KASP®) for marker validation, genomewide selection, and marker-assisted breeding.


Subject(s)
Capsicum , Disease Resistance , Genome-Wide Association Study , Phytophthora , Plant Diseases , Plant Roots , Polymorphism, Single Nucleotide , Phytophthora/physiology , Phytophthora/pathogenicity , Capsicum/genetics , Capsicum/microbiology , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Plant Roots/microbiology , Plant Roots/genetics , Genotype
2.
Plant Dis ; 107(11): 3457-3463, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37115568

ABSTRACT

Phytophthora blight, caused by Phytophthora capsici, is a serious disease of many vegetable crops worldwide. In New Mexico, U.S.A., the disease affects chile pepper (Capsicum annuum L.), a major crop in the state. There is no single tool that effectively controls the disease. Continuous research is needed in identifying combination of tools that can reduce the impact of Phytophthora blight. We explored the potential of combining cover crops and biocontrol agents to reduce soilborne diseases. This study aimed to evaluate the effects of Indian mustard (Brassica juncea L.) cover crop on the antagonistic ability of Trichoderma harzianum against P. capsici in vitro and to quantify the impacts of combining soil amendment with residues from B. juncea and barley (Hordeum vulgare L.) cover crops and plastic covering on infection of chile pepper seedlings by P. capsici under greenhouse conditions. Volatiles from macerated tissue of B. juncea significantly reduced P. capsici and T. harzianum growth in the absence of soil by 89.0 and 79.0%, respectively. When incorporated in soils, volatiles from macerated tissue of B. juncea significantly reduced P. capsici and T. harzianum by 33.4 and 7.8%, respectively. T. harzianum was more resilient to B. juncea biofumigation than P. capsici. Significant reduction in disease incidence was observed with B. juncea-fumigated soil, while no disease suppression was observed with soil incorporation of H. vulgare residues. Covering soil with plastic was necessary for increasing the efficacy of B. juncea biofumigation.


Subject(s)
Capsicum , Hordeum , Phytophthora , Mustard Plant , Plant Diseases/prevention & control , Soil
3.
Phytopathology ; 113(6): 921-930, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36401843

ABSTRACT

In 1922, Phytophthora capsici was described by Leon Hatching Leonian as a new pathogen infecting pepper (Capsicum annuum), with disease symptoms of root rot, stem and fruit blight, seed rot, and plant wilting and death. Extensive research has been conducted on P. capsici over the last 100 years. This review succinctly describes the salient mile markers of research on P. capsici with current perspectives on the pathogen's distribution, economic importance, epidemiology, genetics and genomics, fungicide resistance, host susceptibility, pathogenicity mechanisms, and management.


Subject(s)
Capsicum , Fungicides, Industrial , Phytophthora , Phytophthora/genetics , Plant Diseases
4.
Plant Dis ; 103(7): 1595-1604, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31059384

ABSTRACT

Alternaria leaf spot (caused by Alternaria spp.) is one of the most common foliar diseases of cotton (Gossypium spp.) and occurs in most cotton-growing regions of the world. In surveys of commercial cotton fields, Alternaria leaf spot has increased in prevalence and incidence in southern New Mexico due to favorable environmental conditions in recent years. Incidence, severity, and etiology of leaf spot of cotton in southern New Mexico were determined. Fourteen cotton fields with plants exhibiting leaf spot symptoms were evaluated in October and November 2016, when plants were at late growth stage. Disease incidence was 100% in 13 of the fields, and averaged 70% in the 14th field. Average disease severity index for all fields ranged from 21.5 to 87.0. For identification of the causal agent, 14 isolates (one from each field) were characterized based on morphological features and PCR using universal primers ITS4/ITS5 and primers targeting the plasma membrane ATPase gene. Colonies of all 14 isolates were olive green with distinct white margins and relatively small spores when compared with reference isolates of large-spored species. All 14 isolates were identified as A. alternata. The fungus grew on potato dextrose agar from 5 to 35°C, and optimum growth occurred at temperatures between 20 and 30°C. Cotton plants inoculated with selected isolates of A. alternata displayed symptoms similar to those observed under field conditions. This is the first report of A. alternata as a causal agent of Alternaria leaf spot on cotton in southern New Mexico.


Subject(s)
Alternaria , Gossypium , Alternaria/genetics , Alternaria/physiology , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Gossypium/microbiology , New Mexico , Plant Diseases/microbiology
5.
BMC Genomics ; 16: 577, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26239843

ABSTRACT

BACKGROUND: Verticillium wilt (VW) and Fusarium wilt (FW), caused by the soil-borne fungi Verticillium dahliae and Fusarium oxysporum f. sp. vasinfectum, respectively, are two most destructive diseases in cotton production worldwide. Root-knot nematodes (Meloidogyne incognita, RKN) and reniform nematodes (Rotylenchulus reniformis, RN) cause the highest yield loss in the U.S. Planting disease resistant cultivars is the most cost effective control method. Numerous studies have reported mapping of quantitative trait loci (QTLs) for disease resistance in cotton; however, very few reliable QTLs were identified for use in genomic research and breeding. RESULTS: This study first performed a 4-year replicated test of a backcross inbred line (BIL) population for VW resistance, and 10 resistance QTLs were mapped based on a 2895 cM linkage map with 392 SSR markers. The 10 VW QTLs were then placed to a consensus linkage map with other 182 VW QTLs, 75 RKN QTLs, 27 FW QTLs, and 7 RN QTLs reported from 32 publications. A meta-analysis of QTLs identified 28 QTL clusters including 13, 8 and 3 QTL hotspots for resistance to VW, RKN and FW, respectively. The number of QTLs and QTL clusters on chromosomes especially in the A-subgenome was significantly correlated with the number of nucleotide-binding site (NBS) genes, and the distribution of QTLs between homeologous A- and D- subgenome chromosomes was also significantly correlated. CONCLUSIONS: Ten VW resistance QTL identified in a 4-year replicated study have added useful information to the understanding of the genetic basis of VW resistance in cotton. Twenty-eight disease resistance QTL clusters and 24 hotspots identified from a total of 306 QTLs and linked SSR markers provide important information for marker-assisted selection and high resolution mapping of resistance QTLs and genes. The non-overlapping of most resistance QTL hotspots for different diseases indicates that their resistances are controlled by different genes.


Subject(s)
Crosses, Genetic , Disease Resistance/genetics , Gossypium/genetics , Gossypium/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Quantitative Trait Loci , Verticillium , Chromosome Mapping , Cluster Analysis , Genes, Plant , Genetic Markers , Inbreeding
6.
Mycopathologia ; 179(5-6): 381-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25585493

ABSTRACT

Rhizoctonia leguminicola, which causes fungal blackpatch disease of legumes and other plants, produces slaframine and swainsonine that are largely responsible for causing salivation, lacrimation, frequent urination, and diarrhea in grazing animals including cattle, sheep, and horses. The original identification of R. leguminicola was based only on morphological characters of the fungal mycelia in cultures because of the lack of fungal genetic markers. Recent investigations suggested that R. leguminicola does not belong to genus Rhizoctonia and is instead a member of the ascomycetes, necessitating an accurate reclassification. The objective of this study was to use both genetic and morphological characters of R. leguminicola to find taxonomic placement of this pathogen within ascomycetes. Internal transcribed spacer region (ITS) and glyceraldehyde-3-phosphate dehydrogenase (gpd) encoding gene were amplified from R. leguminicola isolates by PCR using universal primers and sequencing. Rhizoctonia leguminicola ITS and gpd sequences were aligned with other fungal sequences of close relatives, and phylogenetic trees were constructed using neighbor-joining and parsimony analyses. Rhizoctonia leguminicola isolates were clustered within a clade that contains several genera of ascomycetes belonging to the class dothideomycetes. We suggest that the fungus is misidentified in the genus Rhizoctonia and propose its reclassification in a new genus within the phylum Ascomycota.


Subject(s)
Genetic Variation , Rhizoctonia/classification , Rhizoctonia/genetics , Cluster Analysis , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Rhizoctonia/cytology , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...