Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Biopharm ; 199: 114303, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657740

ABSTRACT

Dissolvable microneedles (DMNs), fabricated from biocompatible materials that dissolve in both water and skin have gained popularity in dermatology. However, limited research exists on their application in compromised skin conditions. This study compares the hyaluronic acid-based DMNs penetration, formation of microchannels, dissolution, and diffusion kinetics in intact, barrier-disrupted (tape stripped), and dry (acetone-treated) porcine ear skin ex vivo. After DMNs application, comprehensive investigations including dermoscopy, stereomicroscope, skin hydration, transepidermal water loss (TEWL), optical coherence tomography (OCT), reflectance confocal laser scanning microscopy (RCLSM), confocal Raman micro-spectroscopy (CRM), two-photon tomography combined with fluorescence lifetime imaging (TPT-FLIM), histology, and scanning electron microscopy (SEM) were conducted. The 400 µm long DMNs successfully penetrated the skin to depths of ≈200 µm for dry skin and ≈200-290 µm for barrier-disrupted skin. Although DMNs fully inserted into all skin conditions, their dissolution rates were high in barrier-disrupted and low in dry skin, as observed through stereomicroscopy and TPT-FLIM. The dissolved polymer exhibited a more significant expansion in barrier-disrupted skin compared to intact skin, with the smallest increase observed in dry skin. Elevated TEWL and reduced skin hydration levels were evident in barrier-disrupted and dry skins compared to intact skin. OCT and RCLSM revealed noticeable skin indentation and pronounced microchannel areas, particularly in barrier-disrupted and dry skin. Additional confirmation of DMN effects on the skin and substance dissolution was obtained through histology, SEM, and CRM techniques. This study highlights the impact of skin condition on DMN effectiveness, emphasizing the importance of considering dissolvability and dissolution rates of needle materials, primarily composed of hyaluronic acid, for optimizing DMN-based drug delivery.


Subject(s)
Administration, Cutaneous , Hyaluronic Acid , Needles , Skin Absorption , Skin , Solubility , Animals , Swine , Skin/metabolism , Skin/drug effects , Skin Absorption/drug effects , Skin Absorption/physiology , Hyaluronic Acid/chemistry , Hyaluronic Acid/administration & dosage , Drug Delivery Systems/methods , Tomography, Optical Coherence/methods , Microinjections/methods , Water Loss, Insensible/drug effects , Water Loss, Insensible/physiology , Biocompatible Materials/administration & dosage , Biocompatible Materials/chemistry
2.
Clin Cosmet Investig Dermatol ; 16: 1431-1441, 2023.
Article in English | MEDLINE | ID: mdl-37303985

ABSTRACT

Background: Detachable microneedles (DMNs) are dissolvable microneedles that detach from the base during administration. The use of DMNs-containing steroids for acne has never been investigated. Methods: Thirty-five patients with facial inflammatory acne were evaluated for acne treatment efficacy and safety of DMNs and DMNs containing triamcinolone acetonide (TA) via a 28-day randomized, double-blind, controlled trial. Four inflammatory acne lesions were selected from each participant and randomly treated with a single application of 700 µm DMNs containing 262.02 ± 15.62 µg TA (700DMNTA), 1000 µm DMNs containing 160.00 ± 34.92 µg TA (1000DMNTA), 700 µm DMN without TA (700DMN), and a control. Efficacy was measured by assessing physical grading, diameter, volume, erythema index, and melanin index. Safety was evaluated by assessing reports of adverse effects from patients and physicians. Results: All three treatment groups achieved resolution of inflammatory acne significantly faster than the control group, with median times for resolution of 4.6, 5.25, 6.7, and 8.1 days in the 1000DMNTA, 700DMNTA, 700DMN, and control, respectively. When compared to the control group, the diameters and post-acne erythema of inflammatory acne were significantly reduced in the treatment groups. The 1000DMNTA decreased acne size and erythema more than other treatments. DMNTA also tended to decrease acne size and erythema more than DMN with no TA, but there was no statistically significant difference. All participants preferred DMN over conventional intralesional steroid injection due to less pain and self-application. No adverse effect was observed. Conclusion: DMNTA is a safe, effective alternative treatment for inflammatory acne and significantly reduces post-acne erythema.

3.
Drug Deliv Transl Res ; 12(11): 2751-2761, 2022 11.
Article in English | MEDLINE | ID: mdl-35191004

ABSTRACT

To minimize chemical degradation of retinal, we graft this aldehyde on chitosan chains to make them self-assemble into pro-retinal nanoparticles (PRNs), which we then load into detachable dissolvable microneedles (DDMNs) made of 1:1 (by weight) hyaluronic acid/maltose. The presence of PRNs in the hyaluronic acid-maltose needle matrix also helps improve the microneedles' mechanical strength. Ex vivo administration of PRN-loaded DDMNs on fresh porcine ear skin shows, as observed by stereomicroscopic and confocal fluorescence microscopic analyses of the cross-sectioned tissue pieces, complete deposition followed by dissolution of the needles and diffusion of the PRNs in epidermis and dermis. Rats administered with a single dose of PRN-loaded DDMNs show significantly increased epidermal thickness as compared to rats administered with control DDMNs (no PRN). Both the PRN-loaded DDMNs and the control DDMNs produce no skin irritation in rats.


Subject(s)
Chitosan , Nanoparticles , Prodrugs , Administration, Cutaneous , Aldehydes , Animals , Dermis , Drug Delivery Systems , Epidermis , Hyaluronic Acid , Maltose , Needles , Rats , Swine
4.
Sci Rep ; 11(1): 24114, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34916571

ABSTRACT

Delivering bioactive compounds into skin tissue has long been a challenge. Using ex vivo porcine and rat skins, here we demonstrate that a detachable dissolvable microneedle (DDMN) array, a special dissolvable microneedle that allows needle detachment from the base within 2 min post administration, can effectively embed a model compound into epidermis and dermis. Diffusion of the compound from the needle embedding sites to the nearby skin tissue is demonstrated at various post administration periods. The relationship between the time that a conventional dissolvable microneedle array is left on skin without needle detachment from the base and the degree of skin surface abrasion at each microneedle penetration spot is also demonstrated on skin of human volunteers. Co-loading glutathione with vitamin C (vitC) can stabilize vitC in the DDMN. DDMN loaded with vitC and glutathione can help erasing post-acne-hyperpigmentation spots.


Subject(s)
Ascorbic Acid/administration & dosage , Drug Delivery Systems/methods , Glutathione/administration & dosage , Hyperpigmentation/drug therapy , Microinjections/methods , Needles , Animals , Ascorbic Acid/metabolism , Diffusion , Drug Stability , Epidermis/metabolism , Glutathione/metabolism , Humans , Injections, Intradermal , Rats , Skin Physiological Phenomena , Swine
5.
Nanomaterials (Basel) ; 10(2)2020 Feb 20.
Article in English | MEDLINE | ID: mdl-32093242

ABSTRACT

Topical retinoid treatments stimulate biological activities in the skin. The main physical barrier, which limits the efficacy of transdermal drug delivery, is the stratum corneum. Proretinal nanoparticles (PRN) have already been proven to efficiently deliver retinal into the epidermis. In the present study, two transdermal drug delivery systems, microneedles (MN) and PRN, were combined to directly target the dermis. The microchannels induced by the MN, the PRN localization in the microchannels and the skin closure kinetics were investigated by non-invasive imaging techniques, such as dermoscopy, optical coherence tomography and multiphoton tomography. Additionally, the amount of retinal in the epidermis and dermis after application in three different forms (PRN-Loaded microneedles, PRN suspension or conventional retinal solution) was compared. All imaging techniques confirmed the formation of microchannels in the skin, which were partly still detectable after 24 h. Multiphoton tomography showed the release of PRN from the MN within the microchannels. The recovered retinal concentration in the dermis was significantly higher when applied via PRN-loaded microneedles. We hypothesized that this platform of PRN-loaded microneedles can provide a rapid and efficient administration of retinal in the dermis and could be of benefit in some skin conditions such as atrophic scar or photo-aged skin.

6.
ACS Appl Bio Mater ; 3(7): 4581-4589, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-35025457

ABSTRACT

Delivering cells to desired locations in the body is needed for disease treatments, tissue repairs, and various scientific investigations such as animal models for drug development. Here, we report the solid composite material that when embedded with viable cells, can temporarily keep cells alive. Using the material, we also show the fabrication of detachable dissolvable microneedles (DMNs) that can instantly deliver viable cells into skin tissue. B16-F10-murine-melanoma (B16-F10) and human-embryonic-kidney-293T (HEK293T) cells embedded in the solid matrix of the hyaluronic/polyvinylpyrolidone/maltose (HA/PVP/maltose) mixture show 50.6 ± 12.0 and 71.0 ± 5.96% survivals, respectively, when kept at 4 °C for 24 h. Detachable DMNs made of the HA/PVP/maltose mixture and loaded with B16-F10-cells were constructed, and the obtained DMN patches could detach the cell-loaded needles into the skin within 1 min of patch application. In vivo intradermal tumorgrafting mice with the DMNs containing 800 cells of B16-F10 developed tumors 10 times bigger in volume than tumors induced by hypodermic needle injection of suspension containing 100,000 cells. We anticipate this work to be a starting point for viable cell encapsulation in the solid matrix and viable cell delivery via DMNs.

7.
ACS Appl Mater Interfaces ; 8(36): 23549-57, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27404585

ABSTRACT

Here we show that the ability of oxidized carbon particles to penetrate phospholipid bilayer membrane varies with the particle shapes, chemical functionalities on the particle surface, lipid compositions of the membrane and pH conditions. Among the similar surface charged oxidized carbon particles of spherical (oxidized carbon nanosphere, OCS), tubular (oxidized carbon nanotube, OCT), and sheet (oxidized graphene sheet, OGSh) morphologies, OCS possesses the highest levels of adhesion to lipid bilayer membrane and penetration into the cell-sized liposome. OCS preferably binds better to the disordered lipid bilayer membrane (consisting of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine) as compared to the ordered membrane (consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine and cholesterol). The process of OCS-induced leak on the membrane is pH responsive and most pronounced under an acidic condition. Covalently decorating the OCS's surface with poly(ethylene oxide) or (2-aminoethyl)trimethylammonium moieties decreases its ability to interact with the membrane. When used as carriers, OCSs can deliver curcumin into nucleus of A549 human lung cancer and human embryonic kidney cells, in contrast, curcumin molecules delivered by OCTs remain in the cytoplasm. OGShs cannot significantly enter cells and cannot induce noticeable cellular uptake of curcumin.


Subject(s)
Nanospheres , A549 Cells , Graphite , Humans , Lipid Bilayers , Nanotubes, Carbon , Oxides , Phosphatidylcholines
8.
Nano Lett ; 15(5): 3370-6, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25849219

ABSTRACT

A great challenge exists in finding safe, simple, and effective delivery strategies to bring matters across cell membrane. Popular methods such as viral vectors, positively charged particles and cell penetrating peptides possess some of the following drawbacks: safety issues, lysosome trapping, limited loading capacity, and toxicity, whereas electroporation produces severe damages on both cargoes and cells. Here, we show that a serendipitously discovered, relatively nontoxic, water dispersible, stable, negatively charged, oxidized carbon nanoparticle, prepared from graphite, could deliver macromolecules into cells, without getting trapped in a lysosome. The ability of the particles to induce transient pores on lipid bilayer membranes of cell-sized liposomes was demonstrated. Delivering 12-base-long pyrrolidinyl peptide nucleic acids with d-prolyl-(1S,2S)-2-aminocyclopentanecarboxylic acid backbone (acpcPNA) complementary to the antisense strand of the NF-κB binding site in the promoter region of the Il6 gene into the macrophage cell line, RAW 264.7, by our particles resulted in an obvious accumulation of the acpcPNAs in the nucleus and decreased Il6 mRNA and IL-6 protein levels upon stimulation. We anticipate this work to be a starting point in a new drug delivery strategy, which involves the nanoparticle that can induce a transient pore on the lipid bilayer membrane.


Subject(s)
Endosomes/chemistry , Gene Transfer Techniques , Nanoparticles/chemistry , Peptide Nucleic Acids/pharmacology , Animals , Binding Sites , Carbon/chemistry , Carbon/pharmacology , Cell Line , Humans , Interleukin-6/chemistry , Interleukin-6/genetics , Lipid Bilayers/chemistry , Liposomes/chemistry , Liposomes/pharmacology , Macrophages/chemistry , Mice , NF-kappa B/chemistry , NF-kappa B/genetics , Nanoparticles/administration & dosage , Oxidation-Reduction , Peptide Nucleic Acids/chemistry , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...