Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Biomech (Bristol, Avon) ; 112: 106185, 2024 02.
Article in English | MEDLINE | ID: mdl-38262121

ABSTRACT

BACKGROUND: Most total disc replacements provide excessive mobility and not reproduce spinal kinematics, inducing zygapophyseal joint arthritic changes and chronic back pain. In cadaveric lumbosacral spines, we studied if a new lumbar disc prosthesis kinematics mimics the intact intervertebral disc. METHODS: In eight cold preserved cadaveric lumbosacral spines, we registered the movement ranges in flexion, extension, right and left lateral bending, and rotation in the intact status, post-discectomy, and after our prosthesis implantation, comparing them for each specimen. FINDINGS: Comparing the intact lumbosacral spine with the L4-L5 prosthesis implanted specimens, we saw statistically significant differences in lateral bending and right rotation but not in the full range of rotation. Analyzing segments, we also noticed statistically significant differences at L4-L5 in flexion-extension and rotation. On the other hand, the L4-L5 discectomy, compared to the baseline spine condition, showed a statistically significant mobility increase in flexion, extension, lateral bending, and axial rotation, with an abnormal instantaneous center of rotation, which destabilizes the segment partly due to anterior annulus surgical removal. Disc prosthesis implantation reversed these changes in instantaneous center of rotation, but the prosthesis failed to restore the initial range of motion due to the destabilization of the ligaments in the operated disc. INTERPRETATION: The ADDISC total disc replacement reproduces the intact disc kinematics and Instantaneous Center of Rotation, but the prosthesis fails to restore the initial range of motion due to ligament destabilization. More studies will be necessary to define a technique that restores the damaged ligaments when implanting the prosthesis.


Subject(s)
Artificial Limbs , Intervertebral Disc , Humans , Lumbar Vertebrae/surgery , Prosthesis Implantation , Intervertebral Disc/surgery , Range of Motion, Articular , Biomechanical Phenomena , Cadaver
2.
N Am Spine Soc J ; 2: 100016, 2020 Aug.
Article in English | MEDLINE | ID: mdl-35141586

ABSTRACT

STUDY DESIGN: Biomechanical study in cadaveric specimens. BACKGROUND: The commercially available lumbar disc prostheses do not reproduce the intact disc's Instantaneous centre of Rotation (ICR), thus inducing an overload on adjacent anatomical structures, promoting secondary degeneration. AIM: To examine biomechanical testing of cadaveric lumbar spine specimens in order to evaluate and define the ICR of intact lumbar discs. MATERIAL AND METHODS: Twelve cold preserved fresh human cadaveric lumbosacral spine specimens were subjected to computerized tomography (CT), magnetic resonance imaging (MRI) and biomechanical testing. Kinematic studies were performed to analyse range of movements in order to determine ICR. RESULTS: Flexoextension and lateral bending tests showed a positive linear correlation between the angle rotated and the displacement of the ICR in different axes. DISCUSSION: ICR has not been taken into account in any of the available literature regarding lumbar disc prosthesis. Considering our results, neither the actual ball-and-socket nor the withdrawn elastomeric nucleus models fit the biomechanics of the lumbar spine, which could at least in part explain the failure rates of the implants in terms of postoperative failed back syndrome (low back pain). It is reasonable to consider then that an implant should also adapt the equations of the movement of the intact ICR of the joint to the post-surgical ICR. CONCLUSIONS: This is the first cadaveric study on the ICR of the human lumbar spine. We have shown that it is feasible to calculate and consider this parameter in order to design future prosthesis with improved clinical and biomechanical characteristics.

SELECTION OF CITATIONS
SEARCH DETAIL
...