Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Cell Death Dis ; 15(5): 361, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796462

ABSTRACT

Disease models of neurodegeneration with brain iron accumulation (NBIA) offer the possibility to explore the relationship between iron dyshomeostasis and neurodegeneration. We analyzed hiPS-derived astrocytes from PANK2-associated neurodegeneration (PKAN), an NBIA disease characterized by progressive neurodegeneration and high iron accumulation in the globus pallidus. Previous data indicated that PKAN astrocytes exhibit alterations in iron metabolism, general impairment of constitutive endosomal trafficking, mitochondrial dysfunction and acquired neurotoxic features. Here, we performed a more in-depth analysis of the interactions between endocytic vesicles and mitochondria via superresolution microscopy experiments. A significantly lower number of transferrin-enriched vesicles were in contact with mitochondria in PKAN cells than in control cells, confirming the impaired intracellular fate of cargo endosomes. The investigation of cytosolic and mitochondrial iron parameters indicated that mitochondrial iron availability was substantially lower in PKAN cells compared to that in the controls. In addition, PKAN astrocytes exhibited defects in tubulin acetylation/phosphorylation, which might be responsible for unregulated vesicular dynamics and inappropriate iron delivery to mitochondria. Thus, the impairment of iron incorporation into these organelles seems to be the cause of cell iron delocalization, resulting in cytosolic iron overload and mitochondrial iron deficiency, triggering mitochondrial dysfunction. Overall, the data elucidate the mechanism of iron accumulation in CoA deficiency, highlighting the importance of mitochondrial iron deficiency in the pathogenesis of disease.


Subject(s)
Astrocytes , Cytosol , Iron Overload , Iron , Mitochondria , Astrocytes/metabolism , Astrocytes/pathology , Humans , Mitochondria/metabolism , Cytosol/metabolism , Iron/metabolism , Iron Overload/metabolism , Iron Overload/pathology , Tubulin/metabolism , Phosphorylation , Iron Deficiencies , Acetylation
2.
Pharmaceutics ; 15(1)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36678831

ABSTRACT

The novel brain-penetrant peroxisome proliferator-activated receptor gamma agonist leriglitazone, previously validated for other rare neurodegenerative diseases, is a small molecule that acts as a regulator of mitochondrial function and exerts neuroprotective, anti-oxidative and anti-inflammatory effects. Herein, we tested whether leriglitazone can be effective in ameliorating the mitochondrial defects that characterize an hiPS-derived model of Pantothenate kinase-2 associated Neurodegeneration (PKAN). PKAN is caused by a genetic alteration in the mitochondrial enzyme pantothenate kinase-2, whose function is to catalyze the first reaction of the CoA biosynthetic pathway, and for which no effective cure is available. The PKAN hiPS-derived astrocytes are characterized by mitochondrial dysfunction, cytosolic iron deposition, oxidative stress and neurotoxicity. We monitored the effect of leriglitazone in comparison with CoA on hiPS-derived astrocytes from three healthy subjects and three PKAN patients. The treatment with leriglitazone did not affect the differentiation of the neuronal precursor cells into astrocytes, and it improved the viability of PKAN cells and their respiratory activity, while diminishing the iron accumulation similarly or even better than CoA. The data suggest that leriglitazone is well tolerated in this cellular model and could be considered a beneficial therapeutic approach in the treatment of PKAN.

3.
Front Cell Neurosci ; 16: 878103, 2022.
Article in English | MEDLINE | ID: mdl-35783094

ABSTRACT

PKAN disease is caused by mutations in the PANK2 gene, encoding the mitochondrial enzyme pantothenate kinase 2, catalyzing the first and key reaction in Coenzyme A (CoA) biosynthetic process. This disorder is characterized by progressive neurodegeneration and excessive iron deposition in the brain. The pathogenic mechanisms of PKAN are still unclear, and the available therapies are only symptomatic. Although iron accumulation is a hallmark of PKAN, its relationship with CoA dysfunction is not clear. We have previously developed hiPS-derived astrocytes from PKAN patients showing iron overload, thus recapitulating the human phenotype. In this work, we demonstrated that PKAN astrocytes presented an increase in transferrin uptake, a key route for cellular iron intake via transferrin receptor-mediated endocytosis of transferrin-bound iron. Investigation of constitutive exo-endocytosis and vesicular dynamics, exploiting the activity-enriching biosensor SynaptoZip, led to the finding of a general impairment in the constitutive endosomal trafficking in PKAN astrocytes. CoA and 4-phenylbutyric acid treatments were found to be effective in partially rescuing the aberrant vesicular behavior and iron intake. Our results demonstrate that the impairment of CoA biosynthesis could interfere with pivotal intracellular mechanisms involved in membrane fusions and vesicular trafficking, leading to an aberrant transferrin receptor-mediated iron uptake.

4.
Cell Death Dis ; 13(2): 185, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35217637

ABSTRACT

Neurodegeneration associated with defective pantothenate kinase-2 (PKAN) is an early-onset monogenic autosomal-recessive disorder. The hallmark of the disease is the massive accumulation of iron in the globus pallidus brain region of patients. PKAN is caused by mutations in the PANK2 gene encoding the mitochondrial enzyme pantothenate kinase-2, whose function is to catalyze the first reaction of the CoA biosynthetic pathway. To date, the way in which this alteration leads to brain iron accumulation has not been elucidated. Starting from previously obtained hiPS clones, we set up a differentiation protocol able to generate inhibitory neurons. We obtained striatal-like medium spiny neurons composed of approximately 70-80% GABAergic neurons and 10-20% glial cells. Within this mixed population, we detected iron deposition in both PKAN cell types, however, the viability of PKAN GABAergic neurons was strongly affected. CoA treatment was able to reduce cell death and, notably, iron overload. Further differentiation of hiPS clones in a pure population of astrocytes showed particularly evident iron accumulation, with approximately 50% of cells positive for Perls staining. The analysis of these PKAN astrocytes indicated alterations in iron metabolism, mitochondrial morphology, respiratory activity, and oxidative status. Moreover, PKAN astrocytes showed signs of ferroptosis and were prone to developing a stellate phenotype, thus gaining neurotoxic features. This characteristic was confirmed in iPS-derived astrocyte and glutamatergic neuron cocultures, in which PKAN glutamatergic neurons were less viable in the presence of PKAN astrocytes. This newly generated astrocyte model is the first in vitro disease model recapitulating the human phenotype and can be exploited to deeply clarify the pathogenetic mechanisms underlying the disease.


Subject(s)
Astrocytes , Pantothenate Kinase-Associated Neurodegeneration , Astrocytes/metabolism , Coenzyme A/genetics , Coenzyme A/metabolism , Humans , Iron/metabolism , Neurons/metabolism , Pantothenate Kinase-Associated Neurodegeneration/genetics , Pantothenate Kinase-Associated Neurodegeneration/metabolism , Pantothenate Kinase-Associated Neurodegeneration/pathology , Phenotype , Phosphotransferases (Alcohol Group Acceptor)/metabolism
5.
Cells ; 10(8)2021 08 03.
Article in English | MEDLINE | ID: mdl-34440737

ABSTRACT

In 2001, a new type of human ferritin was identified by searching for homologous sequences to H-ferritin in the human genome. After the demonstration that this ferritin is located specifically in the mitochondrion, it was called mitochondrial ferritin. Studies on the properties of this new type of ferritin have been limited by its very high homology with the cytosolic H-ferritin, which is expressed at higher levels in cells. This great similarity made it difficult to obtain specific antibodies against the mitochondrial ferritin devoid of cross-reactivity with cytosolic ferritin. Thus, the knowledge of the physiological role of mitochondrial ferritin is still incomplete despite 20 years of research. In this review, we summarize the literature on mitochondrial ferritin expression regulation and its physical and biochemical properties, with particular attention paid to the differences with cytosolic ferritin and its role in physiological condition. Until now, there has been no evidence that the alteration of the mitochondrial ferritin gene is causative of any disorder; however, the identified association of the mitochondrial ferritin with some disorders is discussed.


Subject(s)
Ferritins/metabolism , Mitochondria/metabolism , Anemia, Sideroblastic/metabolism , Anemia, Sideroblastic/pathology , Cytosol/metabolism , Ferritins/chemistry , Friedreich Ataxia/metabolism , Friedreich Ataxia/pathology , Humans , Iron/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Protein Conformation , Restless Legs Syndrome/metabolism , Restless Legs Syndrome/pathology
6.
Cell Mol Life Sci ; 78(7): 3355-3367, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33439270

ABSTRACT

Neuroferritinopathy is a rare autosomal dominant inherited movement disorder caused by alteration of the L-ferritin gene that results in the production of a ferritin molecule that is unable to properly manage iron, leading to the presence of free redox-active iron in the cytosol. This form of iron has detrimental effects on cells, particularly severe for neuronal cells, which are highly sensitive to oxidative stress. Although very rare, the disorder is notable for two reasons. First, neuroferritinopathy displays features also found in a larger group of disorders named Neurodegeneration with Brain Iron Accumulation (NBIA), such as iron deposition in the basal ganglia and extrapyramidal symptoms; thus, the elucidation of its pathogenic mechanism may contribute to clarifying the incompletely understood aspects of NBIA. Second, neuroferritinopathy shows the characteristic signs of an accelerated process of aging; thus, it can be considered an interesting model to study the progress of aging. Here, we will review the clinical and neurological features of neuroferritinopathy and summarize biochemical studies and data from cellular and animal models to propose a pathogenic mechanism of the disorder.


Subject(s)
Apoferritins/metabolism , Iron Metabolism Disorders/pathology , Iron/metabolism , Neuroaxonal Dystrophies/pathology , Animals , Humans , Iron Metabolism Disorders/metabolism , Neuroaxonal Dystrophies/metabolism
7.
Int J Mol Sci ; 23(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35008695

ABSTRACT

During infections, the host redistributes iron in order to starve pathogens from this nutrient. Several proteins are involved in iron absorption, transport, and storage. Ferritin is the most important iron storage protein. It is composed of variable proportions of two peptides, the L- and H-ferritins (FTL and FTH). We previously showed that macrophages increase their expression of FTH1 when they are infected in vitro with Mycobacterium avium, without a significant increase in FTL. In this work, we investigated the role of macrophage FTH1 in M. avium infection in vivo. We found that mice deficient in FTH1 in myeloid cells are more resistant to M. avium infection, presenting lower bacterial loads and lower levels of proinflammatory cytokines than wild-type littermates, due to the lower levels of available iron in the tissues. Importantly, we also found that FTH1 produced by myeloid cells in response to infection may be found in circulation and that it plays a key role in iron redistribution. Specifically, in the absence of FTH1 in myeloid cells, increased expression of ferroportin is observed in liver granulomas and increased iron accumulation occurs in hepatocytes. These results highlight the importance of FTH1 expression in myeloid cells for iron redistribution during infection.


Subject(s)
Blood Circulation , Ferritins/blood , Iron/metabolism , Liver/metabolism , Mycobacterium Infections/blood , Myeloid Cells/metabolism , Animals , Cation Transport Proteins/metabolism , Ferritins/deficiency , Gene Expression Regulation , Inflammation/pathology , Iron Deficiencies/blood , Iron Deficiencies/metabolism , Iron Overload/blood , Iron Overload/metabolism , Mice , Mycobacterium Infections/genetics , Mycobacterium avium/growth & development , Mycobacterium avium/physiology
8.
Int J Mol Sci ; 21(24)2020 Dec 19.
Article in English | MEDLINE | ID: mdl-33352696

ABSTRACT

COASY protein-associated neurodegeneration (CoPAN) is a rare but devastating genetic autosomal recessive disorder of inborn error of CoA metabolism, which shares with pantothenate kinase-associated neurodegeneration (PKAN) similar features, such as dystonia, parkinsonian traits, cognitive impairment, axonal neuropathy, and brain iron accumulation. These two disorders are part of the big group of neurodegenerations with brain iron accumulation (NBIA) for which no effective treatment is available at the moment. To date, the lack of a mammalian model, fully recapitulating the human disorder, has prevented the elucidation of pathogenesis and the development of therapeutic approaches. To gain new insights into the mechanisms linking CoA metabolism, iron dyshomeostasis, and neurodegeneration, we generated and characterized the first CoPAN disease mammalian model. Since CoA is a crucial metabolite, constitutive ablation of the Coasy gene is incompatible with life. On the contrary, a conditional neuronal-specific Coasy knock-out mouse model consistently developed a severe early onset neurological phenotype characterized by sensorimotor defects and dystonia-like movements, leading to premature death. For the first time, we highlighted defective brain iron homeostasis, elevation of iron, calcium, and magnesium, together with mitochondrial dysfunction. Surprisingly, total brain CoA levels were unchanged, and no signs of neurodegeneration were present.


Subject(s)
Coenzyme A Ligases/physiology , Hemochromatosis/pathology , Iron/metabolism , Mitochondrial Diseases/pathology , Motor Disorders/pathology , Pantothenate Kinase-Associated Neurodegeneration/complications , Synapsins/physiology , Animals , Coenzyme A/metabolism , Female , Hemochromatosis/etiology , Homeostasis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Diseases/etiology , Mitochondrial Diseases/metabolism , Motor Disorders/etiology , Motor Disorders/metabolism
9.
Clin Cancer Res ; 26(23): 6387-6398, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32928793

ABSTRACT

PURPOSE: In search of novel strategies to improve the outcome of advanced prostate cancer, we considered that prostate cancer cells rearrange iron homeostasis, favoring iron uptake and proliferation. We exploited this adaptation by exposing prostate cancer preclinical models to high-dose iron to induce toxicity and disrupt adaptation to androgen starvation. EXPERIMENTAL DESIGN: We analyzed markers of cell viability and mechanisms underlying iron toxicity in androgen receptor-positive VCaP and LNCaP, castration-resistant DU-145 and PC-3, and murine TRAMP-C2 cells treated with iron and/or the antiandrogen bicalutamide. We validated the results in vivo in VCaP and PC-3 xenografts and in TRAMP-C2 injected mice treated with iron and/or bicalutamide. RESULTS: Iron was toxic for all prostate cancer cells. In particular, VCaP, LNCaP, and TRAMP-C2 were highly iron sensitive. Toxicity was mediated by oxidative stress, which primarily affected lipids, promoting ferroptosis. In highly sensitive cells, iron additionally caused protein damage. High-basal iron content and oxidative status defined high iron sensitivity. Bicalutamide-iron combination exacerbated oxidative damage and cell death, triggering protein oxidation also in poorly iron-sensitive DU-145 and PC-3 cells.In vivo, iron reduced tumor growth in TRAMP-C2 and VCaP mice. In PC-3 xenografts, bicalutamide-iron combination caused protein oxidation and successfully impaired tumor expansion while single compounds were ineffective. Macrophages influenced body iron distribution but did not limit the iron effect on tumor expansion. CONCLUSIONS: Our models allow us to dissect the direct iron effect on cancer cells. We demonstrate the proof of principle that iron toxicity inhibits prostate cancer cell proliferation, proposing a novel tool to strengthen antiandrogen treatment efficacy.


Subject(s)
Androgen Antagonists/pharmacology , Anilides/pharmacology , Apoptosis , Drug Synergism , Iron/pharmacology , Nitriles/pharmacology , Prostatic Neoplasms/drug therapy , Tosyl Compounds/pharmacology , Animals , Cell Proliferation , Humans , Male , Mice , Prostatic Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
10.
Int J Mol Sci ; 21(10)2020 May 22.
Article in English | MEDLINE | ID: mdl-32456086

ABSTRACT

Pantothenate Kinase-associated Neurodegeneration (PKAN) belongs to a wide spectrum of diseases characterized by brain iron accumulation and extrapyramidal motor signs. PKAN is caused by mutations in PANK2, encoding the mitochondrial pantothenate kinase 2, which is the first enzyme of the biosynthesis of Coenzyme A. We established and characterized glutamatergic neurons starting from previously developed PKAN Induced Pluripotent Stem Cells (iPSCs). Results obtained by inductively coupled plasma mass spectrometry indicated a higher amount of total cellular iron in PKAN glutamatergic neurons with respect to controls. PKAN glutamatergic neurons, analyzed by electron microscopy, exhibited electron dense aggregates in mitochondria that were identified as granules containing calcium phosphate. Calcium homeostasis resulted compromised in neurons, as verified by monitoring the activity of calcium-dependent enzyme calpain1, calcium imaging and voltage dependent calcium currents. Notably, the presence of calcification in the internal globus pallidus was confirmed in seven out of 15 genetically defined PKAN patients for whom brain CT scan was available. Moreover, we observed a higher prevalence of brain calcification in females. Our data prove that high amount of iron coexists with an impairment of cytosolic calcium in PKAN glutamatergic neurons, indicating both, iron and calcium dys-homeostasis, as actors in pathogenesis of the disease.


Subject(s)
Calcium/metabolism , Iron/metabolism , Mitochondria/metabolism , Neurons/metabolism , Pantothenate Kinase-Associated Neurodegeneration/metabolism , Adolescent , Brain/diagnostic imaging , Brain/pathology , Calcium/adverse effects , Calpain/metabolism , Child , Child, Preschool , Cohort Studies , Cytoplasm/physiology , Female , Homeostasis , Humans , Induced Pluripotent Stem Cells , Infant , Iron/adverse effects , Magnetic Resonance Imaging , Male , Mass Spectrometry , Microscopy, Electron , Mitochondria/enzymology , Mitochondria/ultrastructure , Neurons/physiology , Neurons/ultrastructure , Pantothenate Kinase-Associated Neurodegeneration/pathology , Phosphotransferases (Alcohol Group Acceptor) , Tomography, X-Ray Computed , Young Adult
11.
Stem Cell Reports ; 13(5): 832-846, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31587993

ABSTRACT

Neuroferritinopathy (NF) is a movement disorder caused by alterations in the L-ferritin gene that generate cytosolic free iron. NF is a unique pathophysiological model for determining the direct consequences of cell iron dysregulation. We established lines of induced pluripotent stem cells from fibroblasts from two NF patients and one isogenic control obtained by CRISPR/Cas9 technology. NF fibroblasts, neural progenitors, and neurons exhibited the presence of increased cytosolic iron, which was also detectable as: ferritin aggregates, alterations in the iron parameters, oxidative damage, and the onset of a senescence phenotype, particularly severe in the neurons. In this spontaneous senescence model, NF cells had impaired survival and died by ferroptosis. Thus, non-ferritin-bound iron is sufficient per se to cause both cell senescence and ferroptotic cell death in human fibroblasts and neurons. These results provide strong evidence supporting the primary role of iron in neuronal aging and degeneration.


Subject(s)
Ferroptosis , Iron Metabolism Disorders/pathology , Iron/metabolism , Neuroaxonal Dystrophies/pathology , Neurons/pathology , Cells, Cultured , Cellular Senescence , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Iron Metabolism Disorders/metabolism , Middle Aged , Neuroaxonal Dystrophies/metabolism , Neurons/metabolism
12.
Adv Exp Med Biol ; 1173: 153-177, 2019.
Article in English | MEDLINE | ID: mdl-31456210

ABSTRACT

Neurodegeneration with brain iron accumulation (NBIA) is a group of seriously devastating and life-threatening rare monogenic diseases characterized by focal iron accumulation in the brain. The main symptoms of NBIA comprise progressive movement disorder, often including painful dystonia, parkinsonism, mental disability, and early death. Currently, a single established therapy is not available to reverse the progression of these debilitating disorders. The complexity of NBIA emerged from the identification of various causative genes, and up to 15 genes have been identified to date. Although the NBIA genes are involved in different cellular biochemical pathways, they show the common characteristic of generating severe iron accumulation in the basal ganglia of the patients' brains. Thus, the molecular events that lead to brain iron overload and their important roles in the pathophysiology of the diseases are not easy to identify and are poorly understood. This review summarizes the current knowledge on NBIA disorders, with a particular focus on the data describing the role of iron in the pathogenic mechanisms.


Subject(s)
Brain/physiopathology , Iron/metabolism , Basal Ganglia , Brain/metabolism , Humans , Iron Overload , Neurodegenerative Diseases
13.
Antioxid Redox Signal ; 30(2): 198-212, 2019 01 10.
Article in English | MEDLINE | ID: mdl-29402144

ABSTRACT

Aims: Mitochondrial ferritin (protein [FtMt]) is preferentially expressed in cell types of high metabolic activity and oxygen consumption, which is consistent with its role of sequestering iron and preventing oxygen-derived redox damage. As of yet, the mechanisms of FtMt regulation and the protection FtMt affords remain largely unknown. Results: Here, we report that hypoxia-inducible factor 1α (HIF-1α) can upregulate FtMt expression. We verify one functional hypoxia-response element (HRE) in the positive regulatory region and two HREs possessing HIF-1α binding activity in the minimal promoter region of the human FTMT gene. We also demonstrate that FtMt can alleviate hypoxia-induced brain cell death by sequestering uncommitted iron, whose levels increase with hypoxia in these cells. Innovation: In the absence of FtMt, this catalytic metal excess catalyzes the production of cytotoxic reactive oxygen species. Conclusion: Thus, the cell ability to increase expression of FtMt during hypoxia may be a skill to avoid tissue damage derived from oxygen limitation.


Subject(s)
Brain/metabolism , Ferritins/genetics , Gene Expression Regulation , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Animals , Base Sequence , Caspase 3/metabolism , Cell Death , Ferritins/metabolism , Hippocampus/metabolism , Humans , Hypoxia/genetics , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Mice, Knockout , Neurons/metabolism , Oxidation-Reduction , Oxidative Stress , Promoter Regions, Genetic , Rats , Response Elements
14.
Biochemistry ; 56(30): 3900-3912, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28636371

ABSTRACT

In animals, the iron storage and detoxification protein, ferritin, is composed of two functionally and genetically distinct subunit types, H (heavy) and L (light), which co-assemble in various ratios with tissue specific distributions to form shell-like protein structures of 24 subunits within which a mineralized iron core is stored. The H-subunit possesses a ferroxidase center (FC) that catalyzes Fe(II) oxidation, whereas the L-subunit does not. To assess the role of the L-subunit in iron oxidation and core formation, two human recombinant heteropolymeric ferritins, designated H-rich and L-rich with ratios of ∼20H:4L and ∼22L:2H, respectively, were employed and compared to the human homopolymeric H-subunit ferritin (HuHF). These heteropolymeric ferritins have a composition similar to the composition of those found in hearts and brains (i.e., H-rich) and in livers and spleens (i.e., L-rich). As for HuHF, iron oxidation in H-rich ferritin was found to proceed with a 2:1 Fe(II):O2 stoichiometry at an iron level of 2 Fe(II) atoms/H-subunit with the generation of H2O2. The H2O2 reacted with additional Fe(II) in a 2:1 Fe(II):H2O2 ratio, thus avoiding the production of hydroxyl radical. A µ-1,2-peroxo-diFe(III) intermediate was observed at the FC of H-rich ferritin as for HuHF. Importantly, the H-rich protein regenerated full ferroxidase activity more rapidly than HuHF did and additionally formed larger iron cores, indicating dual roles for the L-subunit in facilitating iron turnover at the FC and in mineralization of the core. The L-rich ferritin, while also facilitating iron oxidation at the FC, additionally promoted oxidation at the mineral surface once the iron binding capacity of the FC was exceeded.


Subject(s)
Apoferritins/metabolism , Coenzymes/metabolism , Ferritins/metabolism , Heme/metabolism , Iron/metabolism , Apoferritins/chemistry , Apoferritins/genetics , Catalytic Domain , Coenzymes/chemistry , Electrophoresis, Capillary , Ferritins/chemistry , Ferritins/genetics , Heme/chemistry , Holoenzymes/chemistry , Holoenzymes/genetics , Holoenzymes/metabolism , Humans , Hydrogen Peroxide/metabolism , Iron/chemistry , Kinetics , Oxidation-Reduction , Oxidoreductases/chemistry , Oxidoreductases/genetics , Oxidoreductases/metabolism , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
15.
Am J Hematol ; 92(4): 338-343, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28052375

ABSTRACT

Although hyperferritinemia may be reflective of elevated total body iron stores, there are conditions in which ferritin levels are disproportionately elevated relative to iron status. Autosomal dominant forms of hyperferritinemia due to mutations in the L-ferritin IRE or in A helix of L-ferritin gene have been described, however cases of isolated hyperferritinemia still remain unsolved. We describe 12 Italian subjects with unexplained isolated hyperferritinemia (UIH). Four probands have affected siblings, but no affected parents or offspring. Sequencing analyses did not identify casual mutations in ferritin gene or IRE regions. These patients had normal levels of intracellular ferritin protein and mRNA in peripheral blood cells excluding pathological ferritin production at transcriptional and post-transcriptional level. In contrast with individuals with benign hyperferritinemia caused by mutations affecting the ferritin A helix, low rather than high glycosylation of serum ferritin was observed in our UIH subjects compared with controls. These findings suggest that subjects with UIH have a previously undescribed form of hyperferritinemia possibly attributable to increased cellular ferritin secretion and/or decreased serum ferritin clearance. The cause remains to be defined and we can only speculate the existence of mutations in gene/s not directly implicated in iron metabolism that could affect ferritin turnover including ferritin secretion.


Subject(s)
Ferritins/blood , Iron Metabolism Disorders/etiology , Adult , Case-Control Studies , Female , Glycosylation , Humans , Iron Overload , Italy , Male , Middle Aged , Pedigree , RNA, Messenger/blood , Siblings , Young Adult
16.
Sci Rep ; 6: 33432, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27625068

ABSTRACT

Mitochondrial ferritin (FtMt) is an iron storage protein belonging to the ferritin family but, unlike the cytosolic ferritin, it has an iron-unrelated restricted tissue expression. FtMt appears to be preferentially expressed in cell types characterized by high metabolic activity and oxygen consumption, suggesting a role in protecting mitochondria from iron-dependent oxidative damage. The human gene (FTMT) is intronless and its promoter region has not been described yet. To analyze the regulatory mechanisms controlling FTMT expression, we characterized the 5' flanking region upstream the transcriptional starting site of FTMT by in silico enquiry of sequences conservation, DNA deletion analysis, and ChIP assay. The data revealed a minimal promoter region and identified the presence of SP1, CREB and YY1 as positive regulators, and GATA2, FoxA1 and C/EBPß as inhibitors of the transcriptional regulation. Furthermore, the FTMT transcription is increased by acetylating and de-methylating agent treatments in K562 and HeLa cells. These treatments up-regulate FtMt expression even in fibroblasts derived from a Friedreich ataxia patient, where it might exert a beneficial effect against mitochondrial oxidative damage. The expression of FTMT appears regulated by a complex mechanism involving epigenetic events and interplay between transcription factors.


Subject(s)
Epigenesis, Genetic , Ferritins/genetics , Mitochondrial Proteins/genetics , Promoter Regions, Genetic , Transcription Factors/metabolism , Base Sequence , Computer Simulation , Fibroblasts/metabolism , Fibroblasts/pathology , Friedreich Ataxia/genetics , Friedreich Ataxia/pathology , HeLa Cells , Humans , K562 Cells , Luciferases/metabolism
17.
EMBO Mol Med ; 8(10): 1197-1211, 2016 10.
Article in English | MEDLINE | ID: mdl-27516453

ABSTRACT

Pantothenate kinase-associated neurodegeneration (PKAN) is an early onset and severely disabling neurodegenerative disease for which no therapy is available. PKAN is caused by mutations in PANK2, which encodes for the mitochondrial enzyme pantothenate kinase 2. Its function is to catalyze the first limiting step of Coenzyme A (CoA) biosynthesis. We generated induced pluripotent stem cells from PKAN patients and showed that their derived neurons exhibited premature death, increased ROS production, mitochondrial dysfunctions-including impairment of mitochondrial iron-dependent biosynthesis-and major membrane excitability defects. CoA supplementation prevented neuronal death and ROS formation by restoring mitochondrial and neuronal functionality. Our findings provide direct evidence that PANK2 malfunctioning is responsible for abnormal phenotypes in human neuronal cells and indicate CoA treatment as a possible therapeutic intervention.


Subject(s)
Coenzyme A/metabolism , Neurons/pathology , Pantothenate Kinase-Associated Neurodegeneration/physiopathology , Phosphotransferases (Alcohol Group Acceptor)/deficiency , Cell Death , Cells, Cultured , Humans , Mitochondria/pathology , Pluripotent Stem Cells/physiology , Reactive Oxygen Species/metabolism
18.
Neurobiol Dis ; 81: 144-53, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25836419

ABSTRACT

Pantothenate kinase-associated neurodegeneration is an early onset autosomal recessive movement disorder caused by mutation of the pantothenate kinase-2 gene, which encodes a mitochondrial enzyme involved in coenzyme A synthesis. The disorder is characterised by high iron levels in the brain, although the pathological mechanism leading to this accumulation is unknown. To address this question, we tested primary skin fibroblasts from three patients and three healthy subjects, as well as neurons induced by direct fibroblast reprogramming, for oxidative status, mitochondrial functionality and iron parameters. The patients' fibroblasts showed altered oxidative status, reduced antioxidant defence, and impaired cytosolic and mitochondrial aconitase activities compared to control cells. Mitochondrial iron homeostasis and functionality analysis of patient fibroblasts indicated increased labile iron pool content and reactive oxygen species development, altered mitochondrial shape, decreased membrane potential and reduced ATP levels. Furthermore, analysis of induced neurons, performed at a single cell level, confirmed some of the results obtained in fibroblasts, indicating an altered oxidative status and signs of mitochondrial dysfunction, possibly due to iron mishandling. Thus, for the first time, altered biological processes have been identified in vitro in live diseased neurons. Moreover, the obtained induced neurons can be considered a suitable human neuronal model for the identification of candidate therapeutic compounds for this disease.


Subject(s)
Energy Metabolism/physiology , Fibroblasts/ultrastructure , Iron/metabolism , Mitochondria/metabolism , Neurodegenerative Diseases/pathology , Neurons/ultrastructure , Aconitate Hydratase/metabolism , Adenosine Triphosphate/metabolism , Adult , Analysis of Variance , Cells, Cultured , Fibroblasts/pathology , Glutathione/metabolism , Humans , Infant, Newborn , Lip/metabolism , Membrane Potential, Mitochondrial/physiology , Mitochondria/pathology , Mitochondria/ultrastructure , Mutation , Neurodegenerative Diseases/enzymology , Neurodegenerative Diseases/genetics , Neurons/pathology , Oxidation-Reduction , Phosphotransferases (Alcohol Group Acceptor)/genetics , Reactive Oxygen Species/metabolism
19.
PLoS One ; 10(3): e0116396, 2015.
Article in English | MEDLINE | ID: mdl-25738292

ABSTRACT

Friedreich ataxia (FA) is an autosomal recessive disease with a complex neurological phenotype, but the most common cause of death is heart failure. This study presents a systematic analysis of 15 fixed and 13 frozen archival autopsy tissues of FA hearts and 10 normal controls (8 frozen) by measurement of cardiomyocyte hypertrophy; tissue frataxin assay; X-ray fluorescence (XRF) of iron (Fe) and zinc (Zn) in polyethylene glycol-embedded samples of left and right ventricular walls (LVW, RVW) and ventricular septum (VS); metal quantification in bulk digests by inductively-coupled plasma optical emission spectrometry (ICP-OES); Fe histochemistry; and immunohistochemistry and immunofluorescence of cytosolic and mitochondrial ferritins and of the inflammatory markers CD68 and hepcidin. FA cardiomyocytes were significantly larger than normal and surrounded by fibrotic endomysium. Frataxin in LVW was reduced to less than 15 ng/g wet weight (normal 235.4 ± 75.1 ng/g). All sections displayed characteristic Fe-reactive inclusions in cardiomyocytes, and XRF confirmed significant regional Fe accumulation in LVW and VS. In contrast, ICP-OES analysis of bulk extracts revealed normal total Fe levels in LVW, RVW, and VS. Cardiac Zn remained normal by XRF and assay of bulk digests. Cytosolic and mitochondrial ferritins exhibited extensive co-localization in cardiomyocytes, representing translational and transcriptional responses to Fe, respectively. Fe accumulation progressed from a few small granules to coarse aggregates in phagocytized cardiomyocytes. All cases met the "Dallas criteria" of myocarditis. Inflammatory cells contained CD68 and cytosolic ferritin, and most also expressed the Fe-regulatory hormone hepcidin. Inflammation is an important factor in the pathogenesis of FA cardiomyopathy but may be more evident in advanced stages of the disease. Hepcidin-induced failure of Fe export from macrophages is a likely contributory cause of damage to the heart in FA. Frataxin replacement and anti-inflammatory agents are potential therapies in FA cardiomyopathy.


Subject(s)
Friedreich Ataxia/metabolism , Myocarditis/metabolism , Adolescent , Adult , Aged , Case-Control Studies , Female , Ferritins/metabolism , Friedreich Ataxia/pathology , Heart Ventricles/pathology , Hepcidins/metabolism , Humans , Iron/metabolism , Male , Middle Aged , Mitochondria, Heart/metabolism , Myocardium/metabolism , Young Adult
20.
Hum Reprod ; 29(3): 577-83, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24430779

ABSTRACT

STUDY QUESTION: Does the iron content of an endometrioma represent a potential source of toxicity for the adjacent follicles? SUMMARY ANSWER: The presence of an endometrioma increases iron and H/L ferritin levels, and transferrin receptor (TfR1) mRNA in individual follicles proximal to the endometrioma and is accompanied by reduced oocyte retrieval. WHAT IS KNOWN ALREADY: Levels of free iron in endometriotic ovarian cysts are much higher than those in normal serum or in non-endometriotic ovarian cysts. The presence of an endometrioma exerts a detrimental effect on the surrounding healthy ovarian tissue as reflected by a reduced number of developing follicles and oocytes retrieved in IVF cycles. STUDY DESIGN, SIZE, DURATION: This is a research study with prospective collection and evaluation of individual follicles (follicular fluid and luteinized granulosa cells) from the affected and the healthy ovaries of 13 women with unilateral endometrioma. PARTICIPANTS/MATERIALS, SETTING, METHODS: Individual follicular samples (145) were obtained from 13 women with endometriosis-related infertility undergoing IVF-ICSI procedures from May 2012 to March 2013. All women had unilateral endometrioma not previously treated with surgery; the contralateral ovary was free of endometriomas and previous surgery. The average ± SEM age was 35.36 ± 2.5 years with anti-Mullerian hormone levels of 2.03 ± 0.55 ng/ml. Follicles were classified as: (i) proximal follicles, in physical contact with the endometrioma; (ii) distal follicles, present in the affected ovary but not in close contact with the endometrioma and (iii) contralateral follicles, in the contralateral healthy ovary. Iron content was measured by the FerroZine method. H/L ferritin subunits were evaluated by specific enzyme-linked immunosorbant assays. Expression of H ferritin and TfR1 was examined by semi-quantitative RT-PCR. Oocyte retrieval rates and Day 3 embryo quality were analyzed. MAIN RESULTS AND THE ROLE OF CHANCE: Total iron levels were higher in endometrioma-proximal follicles compared with endometrioma-distal ones (P = 0.009) and to follicles in the healthy ovary (P = 0.02). L ferritin was higher in proximal versus distal follicles (P = 0.044) or follicles from the healthy ovary (P = 0.027). H ferritin was higher in the proximal and distal follicles compared with follicles in the healthy ovary (P = 0.042 and P = 0.0067, respectively). H ferritin transcript levels in granulosa cells were higher in proximal follicles versus follicles from healthy ovary (P = 0.02). TfR1 transcript levels were higher in proximal versus distal follicles (P = 0.03) and versus follicles from the healthy ovary (P = 0.04). The oocyte retrieval rate was lower in proximal and distal follicles than in follicles from the healthy ovary (P = 0.001 and P = 0.04, respectively). LIMITATIONS, REASONS FOR CAUTION: This is a study on a relatively small sample size and confirmation in a larger group of patients may be required. The method used to purify luteinized granulosa cells offers the best combination of purity, viability and total number of cells recovered. However, a minor contamination by CD45(+) cells (<5%) cannot be excluded. WIDER IMPLICATIONS OF THE FINDINGS: This study represents a further in-depth analysis of the toxic influence of the endometrioma content on the surrounding follicles. We demonstrate the presence of iron-related compounds that are potentially toxic to developing ovarian follicles adjacent to the endometrioma during IVF. Our findings provide novel information that suggests that when surgical removal of the endometrioma is not the option, follicle aspiration at sites distant from the endometrioma might increase the probability of retrieving oocytes. STUDY FUNDING/COMPETING INTEREST(S): This project was supported by Fondazione Giorgio Pardi, Milan, Italy. The authors have no competing financial interests in relation to the content of this research paper. TRIAL REGISTRATION NUMBER: NA.


Subject(s)
Iron/metabolism , Ovarian Follicle/metabolism , Antigens, CD/biosynthesis , Endometriosis/surgery , Female , Ferritins/biosynthesis , Granulosa Cells/metabolism , Humans , Oocyte Retrieval , Ovarian Follicle/drug effects , Receptors, Transferrin/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...