Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theriogenology ; 85(6): 1132-8, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26733119

ABSTRACT

Although L-Arginine (ARG) has been reported as a promising bovine sperm capacitation agent, its effects on embryo development are still poorly understood. Herein, we compared the effects of ARG and/or heparin (HEP) addition to the fertilization medium for bovine oocytes on sperm capacitation and embryo development. We chose 10 mM ARG based on blastocyst development rates in a titration experiment. Addition of ARG and/or HEP to the fertilization medium resulted in similar rates of blastocyst development (P > 0.05). However, when ARG, but not HEP, was combined with a nitric oxide (NO) synthase inhibitor (N-Nitro-L-ARG-methyl ester, 10 mM) blastocyst development was decreased (P < 0.05). To assess the effects on capacitation, bovine sperm were incubated for 0, 3, and 6 hours in fertilization medium containing ARG and/or HEP and/or N-Nitro-L-ARG-methyl esterand acrosomal exocytosis rates were evaluated using fluorescein isothiocyanate conjugated Pisum sativum lectin (FITC-PSA) staining and flow cytometry. With HEP, acrosomal exocytosis rates were highest by 3 hours of incubation; however, by 6 hours, rates were similar for HEP and/or ARG (P > 0.05) and higher than those in control media (P < 0.05). Although both ARG and HEP increased sperm NO production (P < 0.05), combination with L-NAME only precluded acrosomal exocytosis when ARG added alone in the medium (P > 0.05). These results suggest that although both ARG and HEP supported sperm capacitation, only the effects of the former were driven via NO production. Moreover, ARG was also as effective as HEP at improving blastocyst development rates. Therefore, ARG may be used as a low-cost alternative sperm capacitation agent for bovine in vitro embryo production.


Subject(s)
Arginine/pharmacology , Embryo Culture Techniques/veterinary , Embryo, Mammalian/drug effects , Embryonic Development/drug effects , Animals , Cattle , Culture Media , Female , Fertilization in Vitro/veterinary , Nitric Oxide/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/physiology , Sperm Capacitation/drug effects
2.
Theriogenology ; 82(1): 10-6, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24656431

ABSTRACT

Studies in somatic cells have shown that glucocorticoids such as dexamethasone (DEX) may trigger or prevent apoptosis depending on the cell type in culture. Because the dysregulation of apoptosis may lower in vitro embryo production efficiency, we sought to investigate the effects of supplementing IVC medium with DEX (0.1 µg/mL) on embryo morphology, development kinetics, and apoptosis rates of in vitro-produced bovine preimplantation embryos. Embryo morphology was graded on Day 7, and development rates were assessed on Days 4 and 7 of IVC. Apoptosis was evaluated via annexin/propidium iodide staining under fluorescence microscopy where a cell labeled with annexin, propidium iodide, or both would be considered apoptotic. An embryo was counted in the apoptosis rates, if it displayed at least one such labeled cell. Although DEX supplementation did not reduce apoptosis rates, it had a positive impact on developmental kinetics and cell number both on Days 4 and 7 of embryo culture. Presumably, such effect resulted from increased cell proliferation rather than a direct inhibition of apoptosis. Further studies may evaluate the mechanisms by which glucocorticoids may affect embryo development, as DEX supplementation could become a tool to improve in vitro embryo yield in mammalian species.


Subject(s)
Blastocyst/drug effects , Dexamethasone/pharmacology , Embryonic Development/drug effects , Glucocorticoids/pharmacology , Animals , Apoptosis/drug effects , Cattle , Cell Count , Cell Proliferation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...