Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Photochem Photobiol B ; 251: 112847, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38241947

ABSTRACT

The bovine tick Rhipicephalus microplus, a primary ectoparasite of veterinary concern, contributes significantly to disease transmission and reduced cattle productivity, resulting in substantial economic losses. The overuse of chemical acaricides has led to the emergence of resistant strains, posing a considerable challenge to veterinary medicine. Consequently, the development of alternative parasite control methods is essential to ensure livestock quality and enhance food safety worldwide. Our study introduces an innovative approach to photodynamic inactivation (PDI) of the bovine tick, harnessing natural daylight for a potential field application. Reproductive parameters (female and egg mass, egg production index, and larval hatch) were evaluated in engorged female ticks under photodynamic action using the hematoporphyrin (HP) and tetra-cationic porphyrins free-base meso-tetra-ruthenated (4-pyridyl) (RuTPyP) and its zinc(II) complex (ZnRuTPyP) as photosensitizers (PS). The results showed that there was no significant difference between the groups treated with tetra­ruthenium porphyrins and the control group. However, HP exhibits a control percentage of 97.9% at a concentration of 2.5 µmol.L-1, aligning with the expected control rates achieved by conventional chemical acaricides. Photophysical and physicochemical parameters such as the number of singlet oxygen produced and lipophilicity were discussed for each PS and related to tick control percentages. Furthermore, the interaction between HP and chitin, an important macromolecule presents in the tick's cuticle, considered as the primary target tick structure during PDI was observed by the absorption and fluorescence emission spectroscopic techniques. Therefore, the results presented here extend the potential for controlling R. microplus through photodynamic inactivation while utilizing sunlight as a source of natural irradiation.


Subject(s)
Acaricides , Porphyrins , Rhipicephalus , Animals , Female , Cattle , Acaricides/pharmacology , Rhipicephalus/physiology , Porphyrins/pharmacology , Reproduction
2.
Inorg Chem ; 63(4): 1840-1852, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38232297

ABSTRACT

The design of rare-earth-doped upconversion/downshifting nanoparticles (NPs) for theoretical use in nanomedicine has garnered considerable interest. Previous research has emphasized luminescent nanothermometry and photothermal therapy, while three-dimensional (3D) near-infrared (NIR) luminescent tracers have received less attention. Our study introduces Nd3+-, Yb3+-, and Ho3+-doped NaYF4 core-shell luminescent NPs as potential multiparametric nanothermometers and NIR imaging tracers. Nd3+ sensitizes at 804 nm, while Yb3+ bridges to activators Ho3+. We evaluated the photoluminescence properties of Nd3+-, Yb3+-, and Ho3+-doped core and core-shell NPs synthesized via polyol-mediated and thermal decomposition methods. The NaYF4:NdYbHo(7/15/3%)@NaYF4:Nd(15%) core-shell NPs demonstrate competitive nanothermometry capabilities. Specifically, the polyol-synthesized sample exhibits a sensitivity of 0.27% K-1 at 313 K (40 °C), whereas the thermally decomposed synthesized sample shows a significantly higher sensitivity of 0.55% K-1 at 313 K (40 °C) in the near-infrared range. Control samples indicate back energy transfer processes from both Yb and Ho to Nd, while Yb to Ho energy transfer enhances Ho3+-driven upconversion transitions in green and red wavelengths, suggesting promise for photodynamic therapy. Fluorescence molecular tomography confirms 3D NIR fluorescence nanoparticle localization in a biological media after injection, highlighting the potential of core-shell NPs as NIR luminescent tracers. The strategy's clinical impact lies in photothermal treatment planning, leveraging core-shell NPs for (pre)clinical applications, and enabling the easy addition of new functionalities through distinct ion doping.

3.
Inorg Chem ; 62(47): 19195-19207, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37956256

ABSTRACT

This work reports the structural characterization and photophysical properties of DyIII, TbIII, and EuIII coordination polymers with two phenoxo-triazole-based ligands [2,6-di(1H-1,2,4-triazole-1-yl-methyl)-4-R-phenoxo, LRTr (R = CH3; Cl)]. These ligands permitted us to obtain isostructural polymers, described as a 1D double chain, with LnIII being nona-coordinated. The energies of the ligand triplet (T1) states were estimated using low-temperature time-resolved emission spectra of YIII analogues. Compounds with LClTr present higher emission intensity than those with LMeTr. The emission of TbIII compounds was not affected by the different excitation wavelengths used and was emitted in the pure green region. In contrast, DyLMeTr emits in the blue-to-white region, while the luminescence of DyLClTr remains in the white region for all excitation wavelengths. On the other hand, EuIII compounds emit in the blue (ligand) or red region (EuIII) depending on the substituent of the phenoxo moiety and excitation wavelength. Theoretical calculations were employed to determine the excited states of the ligands by using time-dependent density functional theory. These calculations aided in modeling the intramolecular energy transfer and rationalizing the optical properties and demonstrated that the sensitization of the LnIII ions is driven via S1 → LnIII, a process that is less common as compared to T1 → LnIII.

4.
Dalton Trans ; 52(48): 18480-18488, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38014706

ABSTRACT

In this work, a novel complex, [Dy(LPr)(NO3)2]·(H2O)·(NO3) (1), containing a highly distorted macrocyclic ligand (LPr) and weak axial anions (NO3-), was synthesized and characterized. Even though this coordination environment is not ideal for maximizing the magnetic anisotropy of a DyIII ion, a magneto-structural analysis reveals that the high distortion of the macrocycle promotes a disposition of the hard plane and easy axis opposite to the expected one. This results in a quite symmetrical environment which allows obtaining a field induced SMM behaviour. The magnetic relaxation properties of this complex were rationalized with the aid of ab initio multireference calculations. Moreover, 1 showed the characteristic emission bands of DyIII ion, indicating that the macrocyclic ligand acts as an efficient sensitizer in the energy transfer process to the emissive state of the DyIII ion. Due to the symmetric environment of 1, the Y/B intensity ratio (0.61) results in CIE coordinates (0.278; 0.314), close to those of the white light region. To gain further insight into the mechanism leading to the luminescence properties, ab initio calculations were performed to elucidate the key factors controlling the Y/B intensity ratio in this bifunctional complex.

5.
Pharmaceutics ; 15(3)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36986804

ABSTRACT

Inducing immunogenic cell death (ICD) during cancer therapy is a major challenge that might significantly improve patient survival. The purpose of this study was to develop a theranostic nanocarrier, capable both of conveying a cytotoxic thermal dose when mediating photothermal therapy (PTT) after its intravenous delivery, and of consequently inducing ICD, improving survival. The nanocarrier consists of red blood cell membranes (RBCm) embedding the near-infrared dye IR-780 (IR) and camouflaging Mn-ferrite nanoparticles (RBCm-IR-Mn). The RBCm-IR-Mn nanocarriers were characterized by size, morphology, surface charge, magnetic, photophysical, and photothermal properties. Their photothermal conversion efficiency was found to be size- and concentration-dependent. Late apoptosis was observed as the cell death mechanism for PTT. Calreticulin and HMGB1 protein levels increased for in vitro PTT with temperature around 55 °C (ablative regime) but not for 44 °C (hyperthermia), suggesting ICD elicitation under ablation. RBCm-IR-Mn were then intravenously administered in sarcoma S180-bearing Swiss mice, and in vivo ablative PTT was performed five days later. Tumor volumes were monitored for the subsequent 120 days. RBCm-IR-Mn-mediated PTT promoted tumor regression in 11/12 animals, with an overall survival rate of 85% (11/13). Our results demonstrate that the RBCm-IR-Mn nanocarriers are great candidates for PTT-induced cancer immunotherapy.

6.
Pharmaceutics ; 15(2)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36839765

ABSTRACT

Biomimetic nanoparticles hold great promise for photonic-mediated nanomedicine due to the association of the biological functionality of the membrane with the physical/chemical goals of organic/inorganic structures, but studies involving fluorescent biomimetic vesicles are still scarce. The purpose of this article is to determine how photothermal therapy (PTT) with theranostic IR-780-based nanoparticles depends on the dye content, cholesterol content, lipid bilayer phase and cell membrane type. The photophysical responses of synthetic liposomes, cell membrane vesicles and hybrid nanoparticles are compared. The samples were characterized by nanoparticle tracking analysis, photoluminescence, electron spin resonance, and photothermal- and heat-mediated drug release experiments, among other techniques. The photothermal conversion efficiency (PCE) was determined using Roper's method. All samples excited at 804 nm showed three fluorescence bands, two of them independent of the IR-780 content. Samples with a fluorescence band at around 850 nm showed photobleaching (PBL). Quenching was higher in cell membrane vesicles, while cholesterol inhibited quenching in synthetic liposomes with low dye content. PTT depended on the cell membrane and was more efficient for melanoma than erythrocyte vesicles. Synthetic liposomes containing cholesterol and a high amount of IR-780 presented superior performance in PTT experiments, with a 2.4-fold PCE increase in comparison with free IR-780, no PBL and the ability to heat-trigger doxorubicin release.

7.
Dalton Trans ; 52(10): 3158-3168, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36790124

ABSTRACT

Considering the structural design of some of the scarce molecular-based Er-centred emitters in the literature, we explored the optical properties of three ErIII hexaazamacrocyclic complexes, namely Er-EDA (1), Er-OPDA(2) and Er-DAP(3). The macrocyclic ligands in these complexes differ in the lateral spacers, and are derived from 2,6-pyridine-dicarbaldehyde and ethylenediamine (EDA), ortho-phenylenediamine (OPDA) or 1,3-diaminopropane (DAP). Upon ligand-centred excitation, the bluish-green and green emissions of the ErIII ion were detected only for the complexes containing macrocycles with aliphatic spacers (1 and 3), which evidenced that these ligands can sensitize the ErIII luminescence. On the other hand, the ligand derived from the aromatic diamine (2) does not sensitize the ErIII luminescence. Energy transfer mechanisms, temperature sensing, CIE coordinates and CCT values were analyzed. Besides the excitation in the ligands, the erbium-centred excitation at 980 nm allowed the detection, in all cases, of bluish-green, green and red up-converted emissions, and also the downshifted NIR emission. The possible mechanisms involved in these transitions were described and analyzed according to the available data.

8.
Inorg Chem ; 61(41): 16347-16355, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36198146

ABSTRACT

Two mononuclear DyIII complexes, [Dy(L1)(NCS)3] (Dy-EDA) and [Dy(L2)(NCS)3] (Dy-DAP), where Ln (n = 1-2) corresponds to a macrocyclic ligand derived from 2,6-pyridinedicarboxaldehyde and ethylenediamine (L1) and 1,3-diaminepropane (L2) were immobilized on functionalized silicon-based surfaces. This was achieved by the microcontact printing (µCP) technique, generating patterns on a functionalized surface via covalent bond formation through the auxiliary -NCS ligands present in the macrocyclic complex species. With this strategy, it was possible to control the position of the immobilized molecules on the surface. Water contact angle measurements, X-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectra (IRRAS), and atomic force microscopy (AFM) confirmed that the surfaces were successfully functionalized. Furthermore, the optical properties in a broad temperature range were investigated for the as-prepared compounds. At room temperature, Dy-EDA was shown to emit in the deep blue region (Commission Internationald'Eclairage (CIE): (0.175, 0.128)), while Dy-DAP in the white region (CIE: (0.252, 0.312)). The different CIE values were due to the contribution of the strong emission of the ligand in the case of Dy-EDA. Besides, surface photoluminescence measurements showed that the immobilized complexes retained their bulk emissive properties.

9.
Inorg Chem ; 60(9): 6176-6190, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33861078

ABSTRACT

The reaction of aqueous solutions of EuIII, TbIII, and GdIII ions with Na2Hpcpa [H3pcpa = N-(4-carboxyphenyl)oxamic acid] afforded three new isostructural oxamate-containing lanthanide(III) coordination polymers of general formula {LnIII2(Hpcpa)3(H2O)5·H2O}n [Ln = Eu (1),Tb (2), and Gd(3)]. Their structure is made up of neutral zigzag chains running parallel to the [101] direction where double syn-syn carboxylate(oxamate)-bridged dilanthanide(III) pairs (Ln1 and Ln2) are linked by three Hpcpa2- ligands, one of them with the µ-κ2O,O':κO″ coordination mode and the other two with the µ3-κ2O,O':κO″:κO'''. Additionally, two of those chains are interlinked through hydrogen bonding and π-π type interactions, resulting in a porous structure with channels where water molecules are hosted. The emission properties of 1 and 2 are evaluated as a function of the temperature, exhibiting an emission in red and green, respectively. The external quantum yield for 2 is approximately 7 times that obtained for 1, indicating that the oxamate ligand is a better sensitizer for TbIII ions. The temperature dependence of the dc magnetic properties of 1-3 reveals a different magnetic behavior depending on the nature of the LnIII ion. A continuous decrease of χMT occurs for 1 upon cooling, and finally χMT tends to vanish, as expected for the thermal depopulation of the six magnetic 7FJ excited states (J = 1-6) of the EuIII ion with a nonmagnetic 7F0 ground state. χMT for 2 decreases sharply with decreasing the temperature due to the depopulation of the splitted mJ levels of the 7F7 ground state of the magnetically anisotropic TbIII ion. A very weak antiferromagnetic interaction between the magnetically isotropic GdIII ions across the double carboxylate(oxamate) bridge is responsible for the small decrease of χMT at low temperatures for 3. The dynamic (ac) magnetic properties of 2 and 3 reveal a slow magnetic relaxation with very incipient frequency-dependent χM″ signals below 6.0 K (2) and frequency-dependent χM″ peaks below 10.0 K (3) under nonzero applied dc magnetic fields, being thus new examples of field-induced single molecule magnets (SMMs).

10.
Inorg Chem ; 59(8): 5447-5455, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32255645

ABSTRACT

A series of luminescent phenoxo-bridged dinuclear TbIII complexes with tripodal ligands, 2,2'-[[(2-pyridinylmethyl)imino]di(methylene)]-bis(4-R-phenol), where R = CH3 (LCH3) (I), Cl (LCl) (II), CH3O (LCH3O) (III), COOCH3 (LCOOCH3) (IV), were prepared to probe the effect of para-substitution on the phenol ring of the ligand on the TbIII luminescence. For these TbIII complexes a complete suppression of the ligand-centered fluorescence is observed, which demonstrates an efficient ligand-to-metal energy transfer. Complex IV was found to be the one that shows the greater intensity of the emission at room temperature. The obtained quantum yields follow the trend IV > II ≫ I > III. The quantum yield for II and IV is approximately five times greater than those obtained for I and III, indicating that the LCl and LCOOCH3 are better sensitizers of the TbIII ions. These results were rationalized in terms of the variation of the energy gap between the triplet level (T1) of the ligand and the emissive 5D4 level of TbIII, due to the electron-acceptor or electron-donor properties of the substituents. The τav values are in the millisecond range for all the studied complexes and resulted independent of temperature. The Commission International d'Eclairage coordinates (CIE) for all complexes are in the green color region, being insensitive to the variation of temperature. Moreover, the color purity (CP) is ca. 90% for all complexes, being ca. 100% for IV. Thus, the introduction of electron-acceptor substituents on the ligand permitted us to improve the luminescent properties of the TbIII complexes.

11.
Inorg Chem ; 58(15): 10012-10018, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31318542

ABSTRACT

A new series of dinuclear dysprosium(III) complexes, [Dy2(LCH3)2(NO3)2(MeOH)2] (I), [Dy2(LCH3)2(NO3)2(DMF)2]·2DMF (II), [Dy2(LCl)2(NO3)2(DMF)2]·2DMF (III), and [Dy2(LCH3O)2(NO3)2(DMF)2] (IV), with 2,2'-[[(2-pyridinylmethyl)imino]di(methylene)]bis(4-R-phenol), where R = CH3, Cl, and CH3O, were investigated as potential white light emitters. All octacoordinated dysprosium(III) are phenoxo-bridged species and have a similar coordination environment. Nevertheless, I has a MeOH ligand molecule, while for II-IV a DMF ligand replaces that of MeOH. The nature of the coordinated solvent molecule plays an important role in the behavior of the thermal dependence of the Y/B (yellow/blue) emission ratio of the DyIII complexes (Y: 4F9/2 → 6H13/2, yellow and B: 4F9/2 → 6H15/2, blue transitions),, since for I the variation of this ratio is significant, while for the other DyIII complexes with DMF as ligand the ratio remains constant within experimental error. At room temperature the CIE (Commission International d'Eclairage) color coordinates for the DyIII complexes, I (0.286, 0.317), III (0.302, 0.324), and IV (0.322, 0.348) are close to the NTSC (National Television System(s) Committee) standard value for white color. Varying the temperature from 16 to 300 K the CIE coordinates for I change from the blueish to white region of the chromaticity diagram, while those of II present an inverse thermal dependence as compared to I. The CCT (Correlated Color Temperature) values at room temperature for I (8384 K), II (17235 K), and IV (5948 K) permit us to consider these complexes as candidates for white cold light emitters, the high value of II being uncommon. For I and II the CCT values vary strongly with temperature, showing a decrease with increasing temperature for I, and an increase with increasing temperature for II, thus making evident the influence on the photophysical properties of the nature of the coordinated solvent molecule in these complexes.

12.
J Am Chem Soc ; 141(8): 3400-3403, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30702877

ABSTRACT

We report a novel bright deep-blue-emitting crystal form based on a simple cadmium coordination polymer with an impressive external photoluminescence quantum yield of 75.4(9)%.

13.
Inorg Chem ; 54(8): 3805-14, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25831075

ABSTRACT

We report the crystal face indexing and molecular spatial orientation, magnetic properties, electron paramagnetic resonance (EPR) spectra, and density functional theory (DFT) calculations of two previously reported oxovanadium phosphates functionalized with Cu(II) complexes, namely, [Cu(bipy)(VO2)(PO4)]n (1) and [{Cu(phen)}2(VO2(H2O)2)(H2PO4)2 (PO4)]n (2), where bipy = 2,2'-bipyridine and phen = 1,10-phenanthroline, obtained by a new synthetic route allowing the growth of single crystals appropriate for the EPR measurements. Compounds 1 and 2 crystallize in the triclinic group P1̅ and in the orthorhombic Pccn group, respectively, containing dinuclear copper units connected by two -O-P-O- bridges in 1 and by a single -O-P-O- bridge in 2, further connected through -O-P-O-V-O- bridges. We emphasize in our work the structural aspects related to the chemical paths that determine the magnetic properties. Magnetic susceptibility data indicate bulk antiferromagnetism for both compounds, allowing to calculate J = -43.0 cm(-1) (dCu-Cu = 5.07 Å; J defined as Hex(i,j) = -J Si·Sj), considering dinuclear units for 1, and J = -1.44 cm(-1) (dCu-Cu = 3.47 Å) using the molecular field approximation for 2. The single-crystal EPR study allows evaluation of the g matrices, which provide a better understanding of the electronic structure. The absence of structure of the EPR spectra arising from the dinuclear character of the compounds allows estimation of weak additional exchange couplings |J'| > 0.3 cm(-1) for 1 (dCu-Cu = 5.54 Å) and a smaller value of |J'| ≥ 0.15 cm(-1) for 2 (dCu-Cu = 6.59 Å). DFT calculations allow evaluating two different exchange couplings for each compound, specifically, J = -36.60 cm(-1) (dCu-Cu = 5.07 Å) and J' = 0.20 cm(-1) (dCu-Cu =5.54 Å) for 1 and J = -1.10 cm(-1) (dCu-Cu =3.47 Å) and J' = 0.01 cm(-1) (dCu-Cu = 6.59 Å) for 2, this last value being in the range of the uncertainties of the calculations. Thus, these values are in good agreement with those provided by magnetic and single-crystal EPR measurements.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Phosphates/chemistry , Quantum Theory , Vanadates/chemistry , Coordination Complexes/chemical synthesis , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Magnetic Phenomena , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...