Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Contam Hydrol ; 97(1-2): 27-41, 2008 Apr 04.
Article in English | MEDLINE | ID: mdl-18262680

ABSTRACT

Chlorofluorocarbons CFC-11 (CCl(3)F), CFC-12 (CCl(2)F(2)), and CFC-113 (CCl(2)F-CClF(2)) are used in hydrology as transient tracers under the assumption of conservative behavior in the unsaturated and saturated soil zones. However, laboratory and field studies have shown that these compounds are not stable under anaerobic conditions. To determine the degradation rates of CFCs in a tropical environment, atmospheric air, unsaturated zone soil gas, and anoxic groundwater samples were collected in Araihazar upazila, Bangladesh. Observed CFC concentrations in both soil gas and groundwater were significantly below those expected from atmospheric levels. The CFC deficits in the unsaturated zone can be explained by gas exchange with groundwater undersaturated in CFCs. The CFC deficits observed in (3)H/(3)He dated groundwater were used to estimate degradation rates in the saturated zone. The results show that CFCs are degraded to the point where practically no (<5%) CFC-11, CFC-12, or CFC-113 remains in groundwater with (3)H/(3)He ages above 10 yr. In groundwater sampled at our site CFC-11 and CFC-12 appear to degrade at similar rates with estimated degradation rates ranging from approximately 0.25 yr(-1) to approximately 6 yr(-1). Degradation rates increased as a function of reducing conditions. This indicates that CFC dating of groundwater in regions of humid tropical climate has to be carried out with great caution.


Subject(s)
Biodegradation, Environmental , Chlorofluorocarbons/chemistry , Soil Pollutants/chemistry , Water Pollutants, Chemical/chemistry , Bangladesh , Helium/chemistry , Tritium/chemistry
2.
J Org Chem ; 66(22): 7247-53, 2001 Nov 02.
Article in English | MEDLINE | ID: mdl-11681934

ABSTRACT

The rearrangements of 1,5-hexadiene-3-oxide and 3-methyl-1,5-hexadiene-3-oxide have been studied in the gas phase, using both Fourier transform mass spectrometry (FTMS) and the flowing afterglow (FA) technique. Gas-phase studies of ionic rearrangements can be limited by analysis techniques such as collision-induced dissociation, which have the potential of driving the rearrangement prior to fragmentation. In the studies reported here, we have utilized methanol-O-d, methyl nitrite, and dimethyl disulfide as chemical reactivity probes to discern whether rearrangement of either of the alkoxides to their corresponding enolates occurs. Of the three structural probe reagents, dimethyl disulfide has been found to be most ideal, since it reacts efficiently with both alkoxides and enolates to produce a unique product from each. On the basis of the reactions observed between dimethyl disulfide and anions generated from 1,5-hexadien-3-ol and 3-methyl-1,5-hexadien-3-ol, we have found that the gas-phase Cope rearrangement of both tertiary and secondary alkoxides occurs under both FTMS and FA conditions. Use of dimethyl disulfide in the FTMS and evaluation of ion residence time in the FA lead to the establishment of an upper limit on the Delta H(*) of the rearrangement of both the parent secondary and tertiary substrates as approximately 11 kcal mol(-1) at 298 K. This value is consistent with our B3LYP/6-31+G* prediction. The rearrangement is also faster in the gas phase than in solution, in accord with theoretical predictions.

SELECTION OF CITATIONS
SEARCH DETAIL