Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Exp Gerontol ; 167: 111895, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35843349

ABSTRACT

Oxidative stress with higher levels of leptin and inflammatory response are key processes related to pathogenesis of both T. cruzi infection and aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) controls the expression of several genes implicated in the oxidative stress response in many pathological conditions. Melatonin is a pleiotropic hormone with, antioxidant, anti-inflammatory and anti-aging actions. Then, we hypothesized that Nrf2 response is impaired during the acute T. cruzi (9 days) infection and that melatonin rescues Nrf2 responses. Young (5 weeks-old) and middle-aged (18 months-old) male Wistar rats were infected with T. cruzi. Nrf2 translocation and markers of inflammation and oxidative stress were analyzed in blood and spleen. Increased apoptosis levels and oxidative stress indicators were observed in the rat spleen during T. cruzi infection. These responses were accompanied by decreased Nrf2 expression and increased expression of nuclear factor kappa B (NFκB). Melatonin (5 mg/kg/day; p.o. gavage) attenuated the superoxide anion (O2-) and hydrogen peroxide (H2O2) production induced by T. cruzi infection. Increased expressions of catalase and superoxide dismutase (SOD) were detected in the spleen of melatonin-treated rats infected with T. cruzi. Melatonin treatment inhibited the spleen NF-κB activation and downregulates the levels of circulating interleukin (IL)-4, IL-10 and tumor necrosis factor (TNF)-α in T. cruzi middle-aged infected rats. Increased levels of the chemokine CXCL1 in middle-aged control rats was observed, confirming that aging alters the production of this chemokine. In T. cruzi infected young animals, CXCL1 was up-regulated when compared to non-infected young ones. For young or middle-aged animals, melatonin treatment had no significant effect on CXCL1 levels. Our findings demonstrate an important role for Nrf2/NF-kB regulation as a possible mechanism by which melatonin attenuates oxidative stress, and provide new insights for further studies of this indoleamine as a therapeutic co-adjuvant agent against T. cruzi infection.


Subject(s)
Chagas Disease , Melatonin , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Hydrogen Peroxide/pharmacology , Male , Melatonin/pharmacology , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress , Rats , Rats, Wistar
2.
Biochim Biophys Acta Mol Basis Dis ; 1866(11): 165914, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32768678

ABSTRACT

Chagas disease, triggered by the flagellate protozoan Trypanosoma cruzi (T. cruzi) plays a potentially threat to historically non-endemic areas. Considerable evidence established that the immuno-endocrine balance could deeply influence the experimental T. cruzi progression inside the host's body. A high-resolution multiple reaction monitoring approach (MRMHR) was used to study the influence of melatonin on adrenal and plasma steroidal hormones profile of T. cruzi infected Wistar rats. Young (5 weeks) and middle-aged (18 months) male Wistar rats received melatonin (5 mg/Kg, orally) during the acute Chagas disease. Corticosterone, 11-dehydrocorticosterone (11-DHC), cortisol, cortisone, aldosterone, progesterone and melatonin concentration were evaluated. Interleukin-1 alpha and ß (IL-1α and ß), IL-6 and transforming growth factor beta (TGF-ß) were also analyzed. Our results revealed an increased production of corticosterone, cortisone, cortisol and aldosterone in middle-aged control animals, thus confirming the aging effects on the steroidal hormone profile. Serum melatonin levels were reduced with age and predominantly higher in young and middle-aged infected rats. Melatonin treatment reduced the corticosterone, 11-DHC, cortisol, cortisone, aldosterone and progesterone in response to T. cruzi infection. Decreased IL-1 α and ß concentrations were also found in melatonin treated middle-aged infected animals. Melatonin treated middle-aged control rats displayed reduced concentrations of TGF-ß. Melatonin levels were significantly higher in all middle-aged rats treated animals. Reduced percentages of early and late thymocyte apoptosis was found for young and middle-aged melatonin supplemented rats. Finally, our results show a link between the therapeutic and biological effects of melatonin controlling steroidal hormones pathways as well as inflammatory mediators.


Subject(s)
Cytokines/blood , Melatonin/blood , Aging/blood , Aging/metabolism , Aldosterone/blood , Animals , Apoptosis/drug effects , Corticosterone/blood , Cortisone/blood , Interleukin-1alpha/blood , Interleukin-1beta/blood , Male , Rats , Rats, Wistar , Tandem Mass Spectrometry , Thymocytes/drug effects , Thymocytes/metabolism , Trypanosoma cruzi/pathogenicity
3.
Acta Parasitol ; 65(3): 599-609, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32141022

ABSTRACT

BACKGROUND: Chagas disease or American trypanosomiasis is caused by the protozoan Trypanosoma cruzi and is endemic of the Americas. The control of the disease is restricted to toxic and potentially teratogenic drugs, which limit the use during pregnancy. The use of food supplementation offers a safe and low-cost form to alleviate Chagas disease symptoms, mostly in areas with alimentary risk. For example, zinc demonstrates positive effects in immune response, including in Chagas disease during pregnancy. PURPOSE: This study describes the innate response in pregnant rats chronically infected with T. cruzi and supplemented with zinc. METHODS: Pregnant female Wistar rats, infected with T. cruzi, were treated with 20 mg/kg/day zinc sulfate and euthanized on the 18th day. Samples (plasma, splenocytes, and peritoneal exudate) were collected and several immune parameters (nitric oxide, RT1B, CD80/CD86, MCP-1, CD11b/c, NK/NKT, IL-2, IL-10, INF-cc, and apoptosis) evaluated. RESULTS: Under Zinc supplementation and/or T. cruzi infection, the gestation developed normally. Several innate immune parameters such as RT1B, CD80/CD86, MCP-1 expressing lymphocytes, IL-2, and IL-17 were positively altered, whereas nitric oxide, CD11b/c, NK/NKT, apoptosis, INF-γ, and corticosterone demonstrated a pro-pregnancy pattern. CONCLUSION: Our results indicated that zinc has diverse effects on immune response during pregnancy. An anti-T. cruzi immunity, as well as a pro-gestation response, were observed after zinc supplementation. The complete comprehension of zinc supplementation in pregnancy will base an adequate strategy to alleviate Chagas disease symptoms and propagation, especially for populations from endemic areas.


Subject(s)
Chagas Disease/drug therapy , Chagas Disease/immunology , Dietary Supplements , Pregnancy Complications, Infectious/drug therapy , Trypanosoma cruzi/drug effects , Zinc/therapeutic use , Animals , Chronic Disease , Female , Pregnancy , Pregnancy Complications, Infectious/parasitology , Rats , Rats, Wistar
4.
Exp Gerontol ; 135: 110922, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32151734

ABSTRACT

Although T. cruzi was identified as the cause of Chagas disease more than 100 years ago, satisfactory treatments still do not exist, especially for chronic disease. Here we review work suggesting that melatonin could have promise as a Chagas therapeutic. Melatonin has remarkably diverse actions. It is an immunomodulator, an anti-inflammatory, an antioxidant, a free radical scavenger, and has antiapoptotic and anti-aging effects. The elderly (aged 60 years or more) as a group are growing faster than any other age group. Here we discuss the major effects and the mechanisms of action of melatonin on aged T. cruzi-infected rats. Melatonin's protective effects may be consequences of its cooperative antioxidant and immunomodulatory actions. Melatonin modulates oxidative damage, inducing an antioxidant response and reversing age-related thymus regression. Its protective actions could be the result of its anti-apoptotic activity, and by its counteracting the excessive production of corticosterone. This review describes our work showing that host age plays an important and variable influence on the progression of systemic T. cruzi infection and supporting the hypothesis that melatonin should be considered as a powerful therapeutic compound with multiple activities that can improve host homeostasis during experimental T. cruzi infection.


Subject(s)
Chagas Disease , Melatonin , Trypanosoma cruzi , Animals , Antioxidants/pharmacology , Chagas Disease/drug therapy , Melatonin/pharmacology , Rats , Rats, Wistar
5.
Cytokine ; 121: 154736, 2019 09.
Article in English | MEDLINE | ID: mdl-31163343

ABSTRACT

Prolactin (PRL) is a pleiotropic polypeptide hormone produced by the anterior pituitary gland and negatively controlled by dopamine. Some researchers have associated the immune regulatory functions of PRL with some infectious diseases like Toxoplasma gondii and T. cruzi. This work aimed to analyze the possible immuno-modulatory effects of this hormone through the subcutaneous administration of PRL during the experimental Chagas disease. On the 14th day post-infection (dpi), PRL triggered increased percentages of NK cells in treated infected animals as compared to the infected and untreated ones. For early and late apoptosis, our results showed that in chronically infected groups, PRL counteracted splenocyte apoptosis as revealed by the reduced percentages of both, early and late apoptosis. Reduced percentages of spleen CD4+ and CD8+ T cells were detected in infected PRL treated rats (60 days post-infection). Concerning to B cells, a significant increased percentage of these cells was found for all PRL treated infected animals (14th dpi), but no statistically significant alteration was observed on the 60th days post-infection. Furthermore, PRL treatment triggered a significant increase in the percentage of CD4+ T lymphocytes IFN-γ producers, while on the 60th dpi, a reduced percentage of IFN-γ in these cells was observed in prolactin-treated rats compared to infected and untreated ones. Enhanced serum IL-12 levels were detected in infected and PRL treated subjects (60th dpi). Only on 7th day post-infection, the flow cytometric analysis of CFSE-stained CD3+ T cells showed an enhanced proliferation of polyclonal stimulated T cells in PRL-treated and infected animals. In this study, we demonstrated that PRL can influence many aspects of the immune response during the experimental Chagas' disease, and this substance could be used as a supporting trial along with the conventional drug treatment.


Subject(s)
Chagas Disease/drug therapy , Chagas Disease/immunology , Endocrine System/pathology , Prolactin/therapeutic use , Trypanosoma cruzi/physiology , Animals , Apoptosis/drug effects , B-Lymphocytes/drug effects , Cell Line , Cell Proliferation/drug effects , Chagas Disease/blood , Chagas Disease/parasitology , Cytokines/blood , Haplorhini , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Male , Mice, Inbred BALB C , Prolactin/pharmacology , Rats, Wistar , T-Lymphocytes/drug effects
6.
Cytokine ; 111: 88-96, 2018 11.
Article in English | MEDLINE | ID: mdl-30130728

ABSTRACT

Aging is linked with a thymic oxidative damage and some infectious diseases such as Chagas' disease may aggravate this process. The aim of this study was to evaluate the production of distinct cytokines as well as the antioxidant/oxidant status of the thymus and thymocytes populations during Trypanosoma cruzi (T. cruzi) infection. Young (5 weeks old) and aged (18 weeks old) male Wistar rats were inoculated with blood trypomastigotes forms of the Y strain of T. cruzi. On the 16th day after T. cruzi infection, increased concentrations of transforming growth factor ß (TGF-ß), interleukin (IL)-12, IL-17 were detected in aged infected subjects as compared to young infected ones. Interestingly, a reduction in the production of tumor necrose factor (TNF)-α was observed in aged infected rats when compared to young infected subjects. Aged-infected rats presented increased O2- levels, compared to young counterparts. Significant raise in the generation of O2- in aged infected animals, as compared to uninfected counterparts was observed. Up-regulated expression of Nox2 in the thymus of young and aged infected animals was observed. An increased SOD2 expression was detected in the thymus of young animals infected with T. cruzi, when compared to uninfected young rats. Aged animals showed reduced thymus weight and the number of thymocytes. Decreased percentages of SPCD4+ and SPCD8+T cells were detected in aged and control groups when compared to young counterparts. In summary, this is the first data to directly examine the influence of aging on age-related dysfunctions during the acute phase of experimental Chagas disease. Concerning to oxidative stress, it is clear from our analysis that aged infected rats suffer a more intense oxidative damage when compared to young and infected ones. Age and infection triggered a dynamic interplay of cytokines, oxidative stress and thymic dysfunctions which led to impaired response from aged and infected rats. Such findings may have significant functional relevance in therapeutic strategies in order to reestablish the thymic immunological function which occurs in aged and T. cruzi infected subjects.


Subject(s)
Aging/immunology , Chagas Disease/immunology , Cytokines/immunology , Oxidative Stress/immunology , Thymus Gland/immunology , Trypanosoma cruzi/immunology , Aging/pathology , Animals , Chagas Disease/pathology , Male , Rats , Rats, Wistar , Thymocytes/immunology , Thymocytes/pathology , Thymus Gland/pathology
7.
J Pineal Res ; 65(3): e12510, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29781553

ABSTRACT

Although the exact etiology of Chagas disease is not completely elucidated, thymic atrophy and oxidative stress are believed to be important contributors to the pathogenesis during acute Trypanosoma cruzi (T. cruzi) infection. We hypothesized that exogenous melatonin, administered by gavage (5 mg/kg, p.o., gavage) to young (5 weeks old) and middle-aged (18 months old) male Wistar rats, would modulate thymic oxidative damage and reverse the age-related thymus regression during T. cruzi acute infection. Increased levels of superoxide anion (O2- ) were detected in the thymus of infected animals, and treatment with melatonin reverted this response. We found reduced TBARS levels as well as a significant increase in superoxide dismutase (SOD) activity in the thymus of all middle-aged melatonin-treated animals, infected or not with T. cruzi. Furthermore, melatonin increased the thymic expression of SOD1 and SOD2 in middle-aged control animals. Nox2 expression was not affected by melatonin treatment in young or middle-aged animals. Melatonin reverted the age-related thymic regression as revealed by the increase in thymus weight, total number of thymocytes, and reduction in age-related accumulation of double-negative thymocytes. This is the first report to directly examine the effects of melatonin treatment on the thymic antioxidant/oxidant status and thymic changes during T. cruzi infection. Our results revealed new antioxidant features that turn melatonin a potentially useful compound for the treatment of Chagas disease, a condition in which an excessive oxidative damage occurs.


Subject(s)
Antioxidants/pharmacology , Chagas Disease/metabolism , Melatonin/pharmacology , Oxidative Stress/drug effects , Thymus Gland/metabolism , Trypanosoma cruzi , Animals , Chagas Disease/drug therapy , Chagas Disease/pathology , Male , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/metabolism , Superoxides/metabolism , Thymocytes/metabolism , Thymocytes/parasitology , Thymocytes/pathology , Thymus Gland/parasitology , Thymus Gland/pathology
8.
Eur J Pharm Sci ; 111: 330-336, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29032059

ABSTRACT

Chagas disease afflicts 7 to 8 million people worldwide and congenital Chagas' disease usually leads to changes in the maternal environment, culminating in fetal adaptations. Several articles have described the importance of micronutrients on pregnancy, which is sensitive to infections. In Trypanosoma cruzi endemic regions, the Chagas disease is aggravated by the lack of micronutrients in an average diet, to which pregnant women are more susceptible. The aim of this study was to evaluate distinct T cells phenotypes and intracellular cytokines by flow cytometry in pregnant Wistar rats under zinc therapy during experimental Chagas' disease. Twenty female Wistar rats were infected with 1×105 blood trypomastigotes (Y strain) and 30days after infection the animals were mated and grouped: pregnant infected (PI-n=5), pregnant infected/zinc supplied (PIZ-n=5), pregnant control (PC-n=5), control/zinc supplied (PCZ-n=5). Zinc supplementation: 20mg of zinc/Kg/day (gavage) for 18days followed by euthanasia. The immune parameters showed: decreased percentages of CD62LlowCD44high surface marker for infected and treated group (PIZ) when compared to PI (p<0.05). Concerning to T regulatory cells (Treg cells), a significantly lower percentage of splenic Treg cells was found in the infected and treated group (PIZ) as compared to the PI group (p<0.05). The expression of the co-stimulatory molecule CD28+ displayed a significant reduced percentage in TCD8+ for infected and zinc treated group (PIZ) as compared to (PI). The percentages of CD4+/CD11a+ T cells subsets were lower on PIZ as compared to PI. Concerning to CD45RA+ (B lymphocytes) analysis, infected pregnant and treated group (PIZ) showed a significant decrease in CD45RA percentage when compared to (PI) (p<0.05). The intracellular cytokine profiles for TCD4+ and TCD8+ producing IL-4 and IFN-γ revealed that zinc treated and untreated infected pregnant group (PI and PIZ) displayed increased cytokines concentrations as compared to zinc treated and untreated pregnant controls (PC and PCZ). Our data revealed the involvement of zinc as a signaling molecule in the modulation of the inflammatory process and immune response which occurs during pregnancy of T. cruzi infected rats. Zinc acted in a dual fashion, modulating the host's immune response in a way to protect the organism against the deleterious effects of the infection and an overwhelming pro-inflammatory response during pregnancy.


Subject(s)
Chagas Disease/immunology , Pregnancy Complications, Infectious/parasitology , Zinc Sulfate/therapeutic use , Animals , Biomarkers , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Immunologic Memory/drug effects , Immunologic Memory/physiology , Mice , Parasitemia , Pregnancy , Pregnancy Complications, Infectious/drug therapy , Pregnancy Complications, Infectious/immunology , Random Allocation , Rats , Rats, Wistar , Trypanosoma cruzi/drug effects , Zinc Sulfate/administration & dosage
9.
Exp Gerontol ; 90: 43-51, 2017 04.
Article in English | MEDLINE | ID: mdl-28131881

ABSTRACT

The aims of this work were to evaluate the influence of ageing on the magnitude of the immune response in male Wistar rats infected with the Y strain of Trypanosoma cruzi (T. cruzi). Infected young animals displayed enhanced CD4+ T cells as compared to uninfected counterparts. Ageing also triggered a significant reduction in CD8+ T cells compared to young and uninfected groups. The percentage of spleen NKT cells was reduced for all groups, regardless of the infection status. Significant decreased B-cells was noted in aged controls and infected animals as compared to young counterparts. A significant decrease in MHC class II (RT1B) expression in all aged animals was observed, whether infected or not. The highest and significant levels of Thiobarbituric Acid Reactive Substances (TBARS) were noted in the aged and infected animals as compared to young-infected ones (16day). Consequently superoxide dismutase (SOD) activity was reduced for both control and infected aged animals. Significant elevation of 8-isoprostane levels was found in aged control and infected animals. Plasma glutathione (GSH) concentration was reduced in aged control animals, as well as, in the young infected animals. NO production was increased in both infected and uninfected aged animals compared to young infected and uninfected animals. Corticosterone levels were elevated in aged animals, whether infected or not. Thus, our results are inedited since the immune response is not worsened by the simple fact of animals being older. Ageing by itself triggered a damaged immune response as well as enhanced reactive oxygen species, when compared to young counterparts, but it did not contribute to impair the immune response of T. cruzi infected and aged rats.


Subject(s)
Aging/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Chagas Disease/immunology , Animals , B-Lymphocytes/immunology , Corticosterone/blood , Dinoprost/analogs & derivatives , Dinoprost/blood , Glutathione/blood , Male , Rats , Rats, Wistar , Spleen/cytology , Spleen/immunology , Thiobarbituric Acid Reactive Substances/metabolism , Trypanosoma cruzi
10.
J Pineal Res ; 59(4): 488-96, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26432539

ABSTRACT

Although the exact etiology of Chagas' disease remains unknown, the inflammatory process and oxidative stress are believed to be the main contributors to the dysfunction and pathogenesis during chronic Trypanosoma cruzi infection. Our hypothesis is that melatonin administered for 2 months daily could modulate the oxidative stress and the inflammatory response during the chronic infection. Flow cytometric analysis of macrophages and antigen-presenting cells (APC), expression of RT1B as well as LFA-1 and MCP-1 in CD4(+) and CD8(+) T cells and levels of interleukin-17A were assessed. The oxidative stress was evaluated through lipid peroxidation (LPO) analysis on the plasma of thiobarbituric acid-reactive substances (TBARS) and nitric oxide production. Decreased concentrations of nitrite and TBARS were found in infected and melatonin-treated animals, as well as a rising trend in the production of IL-17A as compared to infected and untreated counterparts. A significant decrease was found in the percentages of CD4(+) and CD8(+) T lymphocytes MCP-1 producers for infected and melatonin-treated rats. Reduced percentage of CD8(+) T cells producing LFA-1 was observed in control and melatonin-treated animals as compared to untreated rats. The cellular response of peritoneal APC cells and macrophages significantly dropped in infected and treated animals. As an endpoint, the use of antioxidant compounds such as melatonin emerges as a new and promising approach to control the oxidative stress during the chronic Chagas' disease partially mediated through the abrogation of LPO and the prevention of the inflammatory response and can be used for further investigation on treatment trials for other infectious diseases.


Subject(s)
Interleukin-17/metabolism , Melatonin/pharmacology , Animals , Antioxidants/pharmacology , Flow Cytometry , Inflammation/metabolism , Lymphocyte Function-Associated Antigen-1/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Rats , Receptors, CCR2/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/metabolism
11.
J Pineal Res ; 58(2): 210-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25611919

ABSTRACT

After one century of the discovery of Chagas' disease and the development of an efficient drug with amplitude of actions both in the acute and chronic phase is still a challenge. Alternative immune modulators have been exhaustively used. For that purpose, melatonin and zinc were administered during chronic Trypanosoma cruzi-infected Wistar rats and several endpoints were assessed. Melatonin has a remarkable functional versatility, being associated with important antioxidant, anti-inflammatory, and anti-apoptotic effects. The cross-talk between zinc and the immune system includes its ability to influence the production and signaling of numerous inflammatory cytokines in a variety of cell types. Our study showed that zinc triggered a decrease in the generation of IFN-γ for TCD4(+) cells. Reduced percentage of CD4(+) T cells producing TNF-α was observed in control melatonin or zinc-and-melatonin-treated animals as compared with untreated rats. On the other hand, a significant increase in the percentage of IL-4 from CD4(+) and CD8(+) T lymphocytes producers was observed 60 days after infection, for all zinc-treated animals, whether infected or not. Melatonin and zinc therapies increased the percentages of CD4(+) and CD8(+) T lymphocytes IL-10 producers. CD4(+) CD25(high) Foxp3(+) T cells were also elevated in zinc- and melatonin-treated animals. The modulation of the immune system influenced by these molecules affected cytokine production and the inflammatory process during chronic T. cruzi infection. Elucidation of the interplay between cytokine balance and the pathogenesis of Chagas' disease is extremely relevant not only for the comprehension of the immune mechanisms and clinical forms but, most importantly, also for the implementation of efficient and adequate therapies.


Subject(s)
Chagas Disease/drug therapy , Chagas Disease/immunology , Immunologic Factors/therapeutic use , Melatonin/therapeutic use , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/pathogenicity , Zinc/therapeutic use , Animals , Chagas Disease/metabolism , Forkhead Transcription Factors/metabolism , Interferon-gamma/metabolism , Interleukin-10/metabolism , Interleukin-4/metabolism , Male , Rats , Rats, Wistar , Trypanosoma cruzi/immunology , Tumor Necrosis Factor-alpha/metabolism
12.
Immunobiology ; 220(5): 626-33, 2015 May.
Article in English | MEDLINE | ID: mdl-25604665

ABSTRACT

The immunomodulatory effects of melatonin and zinc during chronic experimental Chagas' disease were studied. Early and late apoptosis by Annexin V-propidium iodide staining were evaluated. The expression of CD28, CD80, CD86, CD45RA and CD4(+)T and CD8(+)T cells were also evaluated by flow cytometry analysis. The combination of zinc and melatonin notably reduced the apoptotic ratios of splenic cells in the infected and treated animals when compared to untreated rats, during early and late stages of apoptosis. The percentages of CD8(+)T cells in Zn, Mel or Zn and Mel treated rats were reduced when compared to infected and untreated animals. Higher percentages of CD28 expression in CD4(+) and CD8(+) T cell populations were observed in control and infected Zn-treated group as compared to untreated ones. Zn, Mel or the combination of both did not induce any statistically significant differences for B cells when comparing to treated control and infected groups. Zinc or Mel-treated animals presented a lower expression of CD86 when compared to untreated counterparts. According to our data, this work strongly suggest that the modulation of the immune system operated by zinc and melatonin administration affected the balance among T cell immune response, apoptosis and expression of co-stimulatory molecules during chronic Trypanosoma cruzi infection, inducing important changes in the host's immune response against the parasite. Future experiments in this field should be focused in improving our understanding of the key mechanisms underlying the involvement of melatonin and zinc in the immune response during chronic Chagas' disease.


Subject(s)
Apoptosis , CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/drug effects , Melatonin/administration & dosage , Zinc/administration & dosage , Animals , Antigens, CD/metabolism , Apoptosis/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Separation , Chagas Disease , Chronic Disease , Drug Therapy, Combination , Flow Cytometry , Humans , Immunomodulation , Male , Models, Animal , Rats , Rats, Wistar
13.
Res Vet Sci ; 93(2): 819-25, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22177576

ABSTRACT

Melatonin has been reported to play a fundamental role in T-cell immunoregulation. Control of Trypanosoma cruzi parasitism during the acute phase of infection is considered to be critically dependent on direct macrophage activation by cytokines. The aim of this work was to evaluate the influence of exogenous melatonin treatment and the influences exerted by sexual hormones during the acute phase of the experimental Chagas' disease in rats. With melatonin treatment, orchiectomized animals (CMOR and IMOR) displayed the highest concentrations of IFN-γ and TNF-α. On the 7th day post-infection, untreated and treated orchiectomized animals (IOR and IMOR) showed an enhanced number of peritoneal macrophages. Nitric oxide levels were also increased in untreated and treated orchiectomized (IOR and IMOR) when compared to the other groups, with or without LPS. Our data suggest that melatonin therapy associated with orchiectomy induced a stimulating effect on the immune response to the parasite.


Subject(s)
Chagas Disease/drug therapy , Melatonin/pharmacology , Orchiectomy , Animals , Chagas Disease/immunology , Gene Expression Regulation/physiology , Interferon-gamma/genetics , Interferon-gamma/metabolism , Lipopolysaccharides , Macrophages, Peritoneal/physiology , Male , Nitric Oxide/blood , Parasitemia , Rats , Rats, Wistar , Time Factors , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
14.
Cytokine ; 56(3): 627-32, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21944888

ABSTRACT

Melatonin by exhibiting antioxidant, anti-aging, and immunomodulatory properties favorably modulate the immune function, protecting the hosts from several infectious diseases. Zinc is an essential trace element important for the efficiency of the immune system in reason of its widespread role in the activity of enzymes, transcription factors and cytokines. The etiology of Chagas' disease, caused by a protozoan parasite Trypanosoma cruzi, has been the focus of considerable discussion, although chronic phase still remains not fully understood. This study showed that zinc and melatonin treatment did not affect the percentage of both CD4+ and CD8+ T lymphocytes subsets in chronically infected animals. Increased levels of IL-2 and IL-10, as well as, enhanced thymocyte proliferation in T. cruzi infected groups under zinc and melatonin therapy was observed as compared to untreated group. Conversely, during the chronic phase of infection, macrophages counts were reduced in melatonin and zinc-melatonin treated animals. The combined actions of zinc and melatonin have beneficial effects in counteracting parasite-induced immune dysregulation, protecting animals against the harmful actions of chronic T. cruzi infection. Furthermore, our results provide an experimental basis for further studies on the role of immunomodulatory therapies.


Subject(s)
Chagas Disease/drug therapy , Chagas Disease/parasitology , Cytokines/biosynthesis , Melatonin/therapeutic use , Trypanosoma cruzi/physiology , Zinc/therapeutic use , Animals , Antigens, CD/immunology , Cell Count , Cell Proliferation/drug effects , Chagas Disease/blood , Chagas Disease/immunology , Chronic Disease , Concanavalin A/pharmacology , Interleukin-10/blood , Interleukin-2/blood , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/parasitology , Male , Melatonin/pharmacology , Parasitemia/drug therapy , Parasitemia/parasitology , Phenotype , Rats , Rats, Wistar , Thymocytes/drug effects , Thymocytes/parasitology , Trypanosoma cruzi/drug effects , Zinc/pharmacology
15.
Vet Parasitol ; 181(2-4): 139-45, 2011 Sep 27.
Article in English | MEDLINE | ID: mdl-21570187

ABSTRACT

During the course of infection by Trypanosoma cruzi, the host immune system is involved in distinct, complex interactions with the endocrine system, and prolactin (PRL) is one of several hormones involved in immunoregulation. Although intensive studies attempting to understand the mechanisms that underlie Chagas' disease have been undertaken, there are still some pieces missing from this complex puzzle. Because data are scarce concerning the role of PRL involvement in Chagas' disease and taking into account the existence of crosstalk between neuroendocrine hormones and the immune system, the current study evaluates a possible up-regulation of the cellular immune response triggered by PRL in T. cruzi-infected rats and the role of PRL in reversing immunosuppression caused by the parasitic infection. The data shown herein demonstrate that PRL induces the proliferation of T lymphocytes, coupled with an activation of macrophages and the production of nitric oxide (NO), leading to a reduction in the number of blood trypomastigotes during the peak of parasitemia. During the acute phase of T. cruzi infection, an enhancement of both CD3+CD4+ and CD3+CD8+ T cell populations were observed in infected groups, with the highest numbers of these T cell subsets found in the infected group treated with PRL. Because NO is a signaling molecule involved in a number of cellular interactions with components of the immune system and the neuroendocrine system, PRL can be considered an alternative hormone able to up-regulate the host's immune system, consequently lowering the pathological effects of a T. cruzi infection.


Subject(s)
Chagas Disease/immunology , Immunity, Innate/immunology , Prolactin/pharmacology , Trypanosoma cruzi , Up-Regulation/physiology , Animals , Cell Proliferation , Chagas Disease/parasitology , Concanavalin A , Flow Cytometry , Lipopolysaccharides , Macrophages, Peritoneal/physiology , Male , Nitric Oxide , Parasitemia , Rats , Rats, Wistar , T-Lymphocyte Subsets/physiology , Thymocytes/physiology
16.
Exp Parasitol ; 127(1): 31-5, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20599998

ABSTRACT

Understanding the mechanisms responsible for mediating the effects of stress on Trypanosoma cruzi infection is crucial for determining the full impact of stress on Chagas' disease and for devising effective interventions. Dehydroepiandrosterone (DHEA), a steroid hormone synthesized from pregnenolone, is secreted by the adrenal cortex in response to stress. Although its physiologic role has not been fully defined, DHEA has been shown to modulate immune function. In the present study, we evaluated the levels of corticosterone and the ability of T. cruzi infection to modulate the expression of Th2 cytokines in Wistar rats with chronic Chagas' disease submitted to repetitive stress. The animals submitted to stress displayed enhanced levels of corticosterone as compared to control counterparts. Stress and infection triggered the most elevated concentrations of corticosterone. DHEA significantly reduced corticosterone levels for infected and stressed animals with DHEA. The infected animals displayed enhanced levels of IL-10 and IL-4 as compared to control ones. Stress combined with infection triggered the higher levels of IL-10 and IL-4. DHEA alone and combined with infection and stress significantly increased IL-10 and IL-4 levels. Then, this study might provide additional clues about factors that regulate some of the immunoregulatory aspects of T. cruzi infection and might offer new opportunities for therapeutic interventions.


Subject(s)
Chagas Disease/immunology , Corticosterone/blood , Interleukin-10/blood , Interleukin-4/blood , Stress, Psychological/complications , Trypanosoma cruzi/immunology , Adrenal Cortex/metabolism , Animals , Chagas Disease/blood , Chagas Disease/complications , Chronic Disease , Dehydroepiandrosterone/metabolism , Male , Rats , Rats, Wistar , Stress, Psychological/immunology , Stress, Psychological/metabolism
17.
Res Vet Sci ; 89(1): 98-103, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20202657

ABSTRACT

The ability of the gonadal hormones to influence diverse immunological functions during the course of several infections has been extensively studied in the latest decades. Testosterone has a suppressive effect on immune response of vertebrates and increases susceptibility toward numerous parasitic diseases. Dehydroepiandrosterone is an abundant steroid hormone secreted by the human adrenal cortex and it is considered potent immune-activator. In this paper, it was examined the effects of DHEA and testosterone supplementation in the thymic atrophy in rats infected with Trypanosoma cruzi, by comparing blood parasitism, thymocyte proliferation, TNF-alpha and IL-12 levels. Our data point in the direction that DHEA treatment triggered enhanced thymocyte proliferation as compared to its infected counterparts and reduced production of TNF-alpha during the acute phase of infection. Oppositely, the lowest values for cells proliferation and IL-12 concentrations were reached in testosterone-supplied animals. The combined treatment testosterone and DHEA improves the effectiveness of the host's immune response, reducing blood parasites and the immunosuppressive effects of male androgens besides increasing IL-12 concentrations and decreasing TNF-alpha levels.


Subject(s)
Antiprotozoal Agents/therapeutic use , Chagas Disease/drug therapy , Dehydroepiandrosterone/therapeutic use , Testosterone/therapeutic use , Thymus Gland/drug effects , Animals , Antiprotozoal Agents/adverse effects , Dehydroepiandrosterone/adverse effects , Interleukin-12/blood , Male , Parasitemia , Rats , Rats, Wistar , Testosterone/adverse effects , Thymus Gland/cytology , Trypanosoma cruzi , Tumor Necrosis Factor-alpha/blood
18.
Immunobiology ; 215(5): 427-34, 2010 May.
Article in English | MEDLINE | ID: mdl-19581019

ABSTRACT

Chagas' disease is considered the sixth most important neglected tropical disease worldwide. Considerable knowledge has been accumulated concerning the role of zinc on cellular immunity. The steroid hormone dehydroepiandrosterone (DHEA) is also known to modulate the immune system. The aims of this paper were to investigate a possible synchronization of their effects on cytokines and NO production and the resistance to Trypanosoma cruzi during the acute phase of infection. It was found that zinc, DHEA or zinc and DHEA supplementation enhanced the immune response, as evidenced by a significant reduction in parasitemia levels. Zinc and DHEA supplementation exerted additive effects on the immune response by elevation of macrophage counts, and by increasing concentrations of IFN-gamma and NO.


Subject(s)
Adjuvants, Immunologic/pharmacology , Chagas Disease/immunology , Dehydroepiandrosterone/pharmacology , Free Radical Scavengers/pharmacology , Immunologic Factors/pharmacology , Th1 Cells/drug effects , Trypanosoma cruzi , Zinc/pharmacology , Animals , Cell Count , Chagas Disease/metabolism , Cytokines/biosynthesis , Interferon-gamma/analysis , Interferon-gamma/biosynthesis , Macrophages, Peritoneal/cytology , Macrophages, Peritoneal/immunology , Male , Nitric Oxide/analysis , Nitric Oxide/biosynthesis , Rats , Rats, Wistar , Th1 Cells/immunology
19.
Res Vet Sci ; 88(2): 273-8, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19883928

ABSTRACT

Growth hormone (GH) is an important hypophyseal hormone that is primarily involved in body growth and metabolism. In mammals, control of Trypanosoma cruzi parasitism during the acute phase of infection is considered to be critically dependent on direct macrophage activation by cytokines. To explore the possibility that GH might be effective in the treatment of Chagas' disease, we investigated its effects on the course of T. cruzi infection in rats, focusing our analyses on its influences on parasitemia, NO, TNF-alpha and IFN-gamma concentration and on histopathological alterations and parasite burden in heart tissue. T. cruzi-infected male Wistar rats were intraperitoneally treated with 5 ng/10 g body weight/day of GH. Animals treated with GH showed a significant reduction in the number of blood trypomastigotes during the acute phase of infection compared with untreated animals (P<0.05). For all experimental days (7, 14 and 21 post infection) of the acute phase, infected and GH treated animals reached higher concentrations of TNF-alpha, IFN-gamma and nitric oxide as compared to untreated and infected counterparts (P<0.05) Histopathological observations of heart tissue revealed that GH administration also resulted in fewer and smaller amastigote burdens, and less inflammatory infiltrate and tissue disorganization, indicating a reduced parasitism of this tissue. These results show that GH can be considered as an immunomodulator substance for controlling parasite replication and combined with the current drug used may represent in the future a new therapeutic tool to reduce the harmful effects of Chagas' disease.


Subject(s)
Chagas Disease/drug therapy , Growth Hormone/therapeutic use , Trypanosoma cruzi/immunology , Animals , Chagas Disease/immunology , Chagas Disease/metabolism , Chagas Disease/parasitology , Heart/parasitology , Male , Nitric Oxide/metabolism , Parasitemia/drug therapy , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism
20.
Vet Parasitol ; 163(1-2): 27-32, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19446400

ABSTRACT

Dehydroepiandrosterone (DHEA) has long been considered as a precursor for many steroid hormones. It also enhances the immune responses against a wide range of viral, bacterial, and parasitic pathogens. The aims of this work were to evaluate the influences of exogenous DHEA treatment on Wistar rats infected with the Y strain of Trypanosoma cruzi during the acute and its influence on the chronic phase of infection. Animals were subcutaneous treated with 40 mg/kg body weight/day of DHEA. DHEA treatment promoted increased lymphoproliferative responses as well as enhanced concentrations of NO and IL-12. So, we point in the direction that our results validate the utility of the use of DHEA as an alternative therapy candidate against T. cruzi.


Subject(s)
Chagas Disease/drug therapy , Dehydroepiandrosterone/pharmacology , Trypanosoma cruzi/drug effects , Animals , Ascitic Fluid/metabolism , Cell Proliferation , Chagas Disease/immunology , Chronic Disease , Interleukin-12/metabolism , Male , Nitric Oxide/biosynthesis , Parasitemia , Rats , Rats, Wistar , Spleen/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...