Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 406: 131068, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972429

ABSTRACT

Cupriavidus necator is a facultative chemolithoautotrophic bacterium able to convert carbon dioxide into poly-3-hydroxybutyrate. This is highly promising as the conversion process allows the production of sustainable and biodegradable plastics. Poly-3-hydroxybutyrate accumulation is known to be induced by nutrient starvation, but information regarding the optimal stress conditions controlling the process is still heterogeneous and fragmentary. This study presents a comprehensive comparison of the effects of nutrient stress conditions, namely nitrogen, hydrogen, phosphorus, oxygen, and magnesium deprivation, on poly-3-hydroxybutyrate accumulation in C. necator DSM545. Nitrogen starvation exhibited the highest poly-3-hydroxybutyrate accumulation, achieving 54% of total cell dry weight after four days of nutrient stress, and a carbon conversion efficiency of 85%. The gas consumption patterns indicated flexible physiological mechanisms underlying polymer accumulation and depolymerization. These findings provide insights into strategies for efficient carbon conversion into bioplastics, and highlight the key role of C. necator for future industrial-scale applications.

2.
Biotechnol Biofuels Bioprod ; 17(1): 101, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014484

ABSTRACT

BACKGROUND: Microbial biopolymers such as poly-3-hydroxybutyrate (PHB) are emerging as promising alternatives for sustainable production of biodegradable bioplastics. Their promise is heightened by the potential utilisation of photosynthetic organisms, thus exploiting sunlight and carbon dioxide as source of energy and carbon, respectively. The cyanobacterium Synechocystis sp. B12 is an attractive candidate for its superior ability to accumulate high amounts of PHB as well as for its high-light tolerance, which makes it extremely suitable for large-scale cultivation. Beyond its practical applications, B12 serves as an intriguing model for unravelling the molecular mechanisms behind PHB accumulation. RESULTS: Through a multifaceted approach, integrating physiological, genomic and transcriptomic analyses, this work identified genes involved in the upregulation of chlorophyll biosynthesis and phycobilisome degradation as the possible candidates providing Synechocystis sp. B12 an advantage in growth under high-light conditions. Gene expression differences in pentose phosphate pathway and acetyl-CoA metabolism were instead recognised as mainly responsible for the increased Synechocystis sp. B12 PHB production during nitrogen starvation. In both response to strong illumination and PHB accumulation, Synechocystis sp. B12 showed a metabolic modulation similar but more pronounced than the reference strain, yielding in better performances. CONCLUSIONS: Our findings shed light on the molecular mechanisms of PHB biosynthesis, providing valuable insights for optimising the use of Synechocystis in economically viable and sustainable PHB production. In addition, this work supplies crucial knowledge about the metabolic processes involved in production and accumulation of these molecules, which can be seminal for the application to other microorganisms as well.

3.
New Phytol ; 241(4): 1592-1604, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38084038

ABSTRACT

Diatoms are a highly successful group of phytoplankton, well adapted also to oligotrophic environments and capable of handling nutrient fluctuations in the ocean, particularly nitrate. The presence of a large vacuole is an important trait contributing to their adaptive features. It confers diatoms the ability to accumulate and store nutrients, such as nitrate, when they are abundant outside and then to reallocate them into the cytosol to meet deficiencies, in a process called luxury uptake. The molecular mechanisms that regulate these nitrate fluxes are still not known in diatoms. In this work, we provide new insights into the function of Phaeodactylum tricornutum NPF1, a putative low-affinity nitrate transporter. To accomplish this, we generated overexpressing strains and CRISPR/Cas9 loss-of-function mutants. Microscopy observations confirmed predictions that PtNPF1 is localized on the vacuole membrane. Furthermore, functional characterizations performed on knock-out mutants revealed a transient growth delay phenotype linked to altered nitrate uptake. Together, these results allowed us to hypothesize that PtNPF1 is presumably involved in modulating intracellular nitrogen fluxes, managing intracellular nutrient availability. This ability might allow diatoms to fine-tune the assimilation, storage and reallocation of nitrate, conferring them a strong advantage in oligotrophic environments.


Subject(s)
Diatoms , Diatoms/metabolism , Nitrates/metabolism , Nitrogen/metabolism , Vacuoles/metabolism , Phytoplankton/metabolism
4.
Open Biol ; 13(2): 220309, 2023 02.
Article in English | MEDLINE | ID: mdl-36722300

ABSTRACT

Diatoms represent one of the most abundant groups of microalgae in the ocean and are responsible for approximately 20% of photosynthetically fixed CO2 on Earth. Due to their complex evolutionary history and ability to adapt to different environments, diatoms are endowed with striking molecular biodiversity and unique metabolic activities. Their high growth rate and the possibility to optimize their biomass make them very promising 'biofactories' for biotechnological applications. Among bioactive compounds, diatoms can produce ovothiols, histidine-derivatives, endowed with unique antioxidant and anti-inflammatory properties, and occurring in many marine invertebrates, bacteria and pathogenic protozoa. However, the functional role of ovothiols biosynthesis in organisms remains almost unexplored. In this work, we have characterized the thiol fraction of Phaeodactylum tricornutum, providing the first evidence of the presence of ovothiol B in pennate diatoms. We have used P. tricornutum to overexpress the 5-histidylcysteine sulfoxide synthase ovoA, the gene encoding the key enzyme involved in ovothiol biosynthesis and we have discovered that OvoA localizes in the mitochondria, a finding that uncovers new concepts in cellular redox biochemistry. We have also obtained engineered biolistic clones that can produce higher amount of ovothiol B compared to wild-type cells, suggesting a new strategy for the eco-sustainable production of these molecules.


Subject(s)
Diatoms , Diatoms/genetics , Genetic Engineering , Methylhistidines , Biological Evolution
5.
Methods Mol Biol ; 2498: 327-336, 2022.
Article in English | MEDLINE | ID: mdl-35727554

ABSTRACT

The CRISPR/Cas9 system coupled with proteolistics is a DNA-free nuclear transformation method based on the introduction of ribonucleoprotein (RNP) complexes into cells. The method has been set up for diatoms as an alternative to genetic transformation via biolistics and has the advantages of reducing off-target mutations, limiting the working time of the Cas9 endonuclease, and overcoming the occurrence of random insertions of the transgene in the genome. We present a point-by-point description of the protocol with modifications that make it more cost-effective, by reducing the amount of the enzyme while maintaining a comparable efficiency to the original protocol, and with an increased concentration of the selective drug which allows to reduce false positives.


Subject(s)
CRISPR-Associated Protein 9 , Diatoms , Biolistics/methods , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , Cell Nucleus/genetics , Diatoms/genetics
6.
Molecules ; 26(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34946780

ABSTRACT

Microalgae have a great potential for the production of healthy food and feed supplements. Their ability to convert carbon into high-value compounds and to be cultured in large scale without interfering with crop cultivation makes these photosynthetic microorganisms promising for the sustainable production of lipids. In particular, microalgae represent an alternative source of polyunsaturated fatty acids (PUFAs), whose consumption is related to various health benefits for humans and animals. In recent years, several strategies to improve PUFAs' production in microalgae have been investigated. Such strategies include selecting the best performing species and strains and the optimization of culturing conditions, with special emphasis on the different cultivation systems and the effect of different abiotic factors on PUFAs' accumulation in microalgae. Moreover, developments and results obtained through the most modern genetic and metabolic engineering techniques are described, focusing on the strategies that lead to an increased lipid production or an altered PUFAs' profile. Additionally, we provide an overview of biotechnological applications of PUFAs derived from microalgae as safe and sustainable organisms, such as aquafeed and food ingredients, and of the main techniques (and their related issues) for PUFAs' extraction and purification from microalgal biomass.


Subject(s)
Aquaculture , Biomass , Fatty Acids, Unsaturated , Metabolic Engineering , Microalgae , Fatty Acids, Unsaturated/biosynthesis , Fatty Acids, Unsaturated/genetics , Microalgae/genetics , Microalgae/growth & development
7.
Open Biol ; 11(4): 200395, 2021 04.
Article in English | MEDLINE | ID: mdl-33823659

ABSTRACT

Diatoms are one of the major and most diverse groups of phytoplankton, with chimeric genomes harbouring a combination of genes of bacterial, animal and plant origin. They have developed sophisticated mechanisms to face environmental variations. In marine environments, nutrients concentration shows significant temporal and spatial variability, influencing phytoplankton growth. Among nutrients, nitrogen, present at micromolar levels, is often a limiting resource. Here, we report a comprehensive characterization of the Nitrate Transporter 1/Peptide Transporter Family (NPF) in diatoms, diNPFs. NPFs are well characterized in many organisms where they recognize a broad range of substrates, ranging from short-chained di- and tri-peptides in bacteria, fungi and mammals to a wide variety of molecules including nitrate in higher plants. Scarce information is available for diNPFs. We integrated-omics, phylogenetic, structural and expression analyses, to infer information on their role in diatoms. diNPF genes diverged to produce two distinct clades with strong sequence and structural homology with either bacterial or plant NPFs, with different predicted sub-cellular localization, suggesting that the divergence resulted in functional diversification. Moreover, transcription analysis of diNPF genes under different laboratory and environmental growth conditions suggests that diNPF diversification led to genetic adaptations that might contribute to diatoms ability to flourish in diverse environmental conditions.


Subject(s)
Biological Evolution , Diatoms/physiology , Genomics , Nitrate Transporters/chemistry , Nitrate Transporters/physiology , Protein Conformation , Binding Sites , Computational Biology/methods , Databases, Genetic , Diatoms/classification , Gene Expression Profiling , Genome , Genomics/methods , Models, Molecular , Phylogeny , Phylogeography , Protein Binding , Structure-Activity Relationship , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...