Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Cardiol Rep ; 25(5): 307-314, 2023 05.
Article in English | MEDLINE | ID: mdl-37052760

ABSTRACT

PURPOSE OF REVIEW: In this review, we explore the chromatin-related consequences of laminopathy-linked mutations through the lens of mechanotransduction. RECENT FINDINGS: Multiple studies have highlighted the role of the nuclear lamina in maintaining the integrity of the nucleus. The lamina also has a critical role in 3D genome organization. Mutations in lamina proteins associated with various laminopathies result in the loss of organization of DNA at the nuclear periphery. However, it remains unclear if or how these two aspects of lamin function are connected. Recent data suggests that unlinking the cytoskeleton from the nuclear lamina may be beneficial to slow progress of deleterious phenotypes observed in laminopathies. In this review, we highlight emerging data that suggest interlinked chromatin- and mechanical biology-related pathways are interconnected in the pathogenesis of laminopathies.


Subject(s)
Cell Nucleus , Mechanotransduction, Cellular , Humans , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cell Nucleus/pathology , Nuclear Lamina/genetics , Nuclear Lamina/metabolism , Chromatin/genetics , Chromatin/metabolism , Biophysics
2.
Cell ; 186(7): 1478-1492.e15, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36870331

ABSTRACT

Lungs undergo mechanical strain during breathing, but how these biophysical forces affect cell fate and tissue homeostasis are unclear. We show that biophysical forces through normal respiratory motion actively maintain alveolar type 1 (AT1) cell identity and restrict these cells from reprogramming into AT2 cells in the adult lung. AT1 cell fate is maintained at homeostasis by Cdc42- and Ptk2-mediated actin remodeling and cytoskeletal strain, and inactivation of these pathways causes a rapid reprogramming into the AT2 cell fate. This plasticity induces chromatin reorganization and changes in nuclear lamina-chromatin interactions, which can discriminate AT1 and AT2 cell identity. Unloading the biophysical forces of breathing movements leads to AT1-AT2 cell reprogramming, revealing that normal respiration is essential to maintain alveolar epithelial cell fate. These data demonstrate the integral function of mechanotransduction in maintaining lung cell fate and identifies the AT1 cell as an important mechanosensor in the alveolar niche.


Subject(s)
Alveolar Epithelial Cells , Mechanotransduction, Cellular , Alveolar Epithelial Cells/metabolism , Cells, Cultured , Lung , Cell Differentiation/physiology , Respiration
3.
Genome Biol ; 24(1): 16, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36691074

ABSTRACT

BACKGROUND: Association of chromatin with lamin proteins at the nuclear periphery has emerged as a potential mechanism to coordinate cell type-specific gene expression and maintain cellular identity via gene silencing. Unlike many histone modifications and chromatin-associated proteins, lamina-associated domains (LADs) are mapped genome-wide in relatively few genetically normal human cell types, which limits our understanding of the role peripheral chromatin plays in development and disease. RESULTS: To address this gap, we map LAMIN B1 occupancy across twelve human cell types encompassing pluripotent stem cells, intermediate progenitors, and differentiated cells from all three germ layers. Integrative analyses of this atlas with gene expression and repressive histone modification maps reveal that lamina-associated chromatin in all twelve cell types is organized into at least two subtypes defined by differences in LAMIN B1 occupancy, gene expression, chromatin accessibility, transposable elements, replication timing, and radial positioning. Imaging of fluorescently labeled DNA in single cells validates these subtypes and shows radial positioning of LADs with higher LAMIN B1 occupancy and heterochromatic histone modifications primarily embedded within the lamina. In contrast, the second subtype of lamina-associated chromatin is relatively gene dense, accessible, dynamic across development, and positioned adjacent to the lamina. Most genes gain or lose LAMIN B1 occupancy consistent with cell types along developmental trajectories; however, we also identify examples where the enhancer, but not the gene body and promoter, changes LAD state. CONCLUSIONS: Altogether, this atlas represents the largest resource to date for peripheral chromatin organization studies and reveals an intermediate chromatin subtype.


Subject(s)
Chromatin , Nuclear Lamina , Humans , Chromatin/metabolism , Nuclear Lamina/genetics , Cell Nucleus/genetics , Chromatin Assembly and Disassembly , Cell Differentiation
5.
Elife ; 112022 05 13.
Article in English | MEDLINE | ID: mdl-35559731

ABSTRACT

Dyskeratosis congenita (DC) is a rare genetic disorder characterized by deficiencies in telomere maintenance leading to very short telomeres and the premature onset of certain age-related diseases, including pulmonary fibrosis (PF). PF is thought to derive from epithelial failure, particularly that of type II alveolar epithelial (AT2) cells, which are highly dependent on Wnt signaling during development and adult regeneration. We use human induced pluripotent stem cell-derived AT2 (iAT2) cells to model how short telomeres affect AT2 cells. Cultured DC mutant iAT2 cells accumulate shortened, uncapped telomeres and manifest defects in the growth of alveolospheres, hallmarks of senescence, and apparent defects in Wnt signaling. The GSK3 inhibitor, CHIR99021, which mimics the output of canonical Wnt signaling, enhances telomerase activity and rescues the defects. These findings support further investigation of Wnt agonists as potential therapies for DC-related pathologies.


Subject(s)
Dyskeratosis Congenita , Induced Pluripotent Stem Cells , Telomerase , Alveolar Epithelial Cells/metabolism , Dyskeratosis Congenita/genetics , Dyskeratosis Congenita/pathology , Glycogen Synthase Kinase 3 , Humans , Induced Pluripotent Stem Cells/metabolism , Mutation , Telomerase/genetics , Telomerase/metabolism , Telomere/metabolism
6.
Horm Behav ; 102: 69-75, 2018 06.
Article in English | MEDLINE | ID: mdl-29750970

ABSTRACT

Testosterone plays a key role in the expression of male sex behavior by influencing cellular activity and synapses within the magnocellular medial preoptic nucleus (MPN mag), a sub-nucleus of the medial preoptic area (MPOA) in the Syrian hamster. Although the mechanisms underlying hormonally-induced synaptic plasticity in this region remain elusive, the data suggests that an increase in synaptic density may mediate testosterone's effects on copulation. As brain derived neurotrophic factor (BDNF) plays an integral role in regulating synaptic plasticity and gonadal steroids regulate the levels of BDNF, we hypothesize that BDNF may mediate the effects of gonadal hormones on copulatory behavior. To test this hypothesis, we infused BDNF or controls into the MPN mag of long-term castrates. Our results indicate that BDNF, but not the controls, restored copulatory behavior in castrated male Syrian hamsters. Furthermore, the rise of BDNF expression in the MPOA preceded the rise of synaptophysin following testosterone replacement in castrated males. These data are consistent with our hypothesis, implicating a role for BDNF in mediating testosterone's action on copulation and suggest that the delay in testosterone's restoration of copulation is, in part, due to the delay in the increase of BDNF and synaptophysin.


Subject(s)
Brain-Derived Neurotrophic Factor/administration & dosage , Copulation/drug effects , Orchiectomy , Preoptic Area/drug effects , Sexual Behavior, Animal/drug effects , Animals , Cricetinae , Gonadal Steroid Hormones/metabolism , Infusions, Intraventricular , Male , Mesocricetus , Orchiectomy/veterinary , Testosterone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL