Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
G3 (Bethesda) ; 10(9): 3071-3085, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32601060

ABSTRACT

Identifying the mechanisms behind neuronal fate specification are key to understanding normal neural development in addition to neurodevelopmental disorders such as autism and schizophrenia. In vivo cell fate specification is difficult to study in vertebrates. However, the nematode Caenorhabditis elegans, with its invariant cell lineage and simple nervous system of 302 neurons, is an ideal organism to explore the earliest stages of neural development. We used a comparative transcriptome approach to examine the role of cnd-1/NeuroD1 in C. elegans nervous system development and function. This basic helix-loop-helix transcription factor is deeply conserved across phyla and plays a crucial role in cell fate specification in both the vertebrate nervous system and pancreas. We find that cnd-1 controls expression of ceh-5, a Vax2-like homeobox class transcription factor, in the RME head motorneurons and PVQ tail interneurons. We also show that cnd-1 functions redundantly with the Hox gene ceh-13/labial in defining the fate of DD1 and DD2 embryonic ventral nerve cord motorneurons. These data highlight the utility of comparative transcriptomes for identifying transcription factor targets and understanding gene regulatory networks.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Basic Helix-Loop-Helix Transcription Factors , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Gene Expression Regulation, Developmental , Genes, Homeobox , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Nerve Tissue Proteins , Neurons/metabolism
2.
Proc Natl Acad Sci U S A ; 117(1): 214-220, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31871178

ABSTRACT

Piezoelectric materials, a type of "smart" material that generates electricity while deforming and vice versa, have been used extensively for many important implantable medical devices such as sensors, transducers, and actuators. However, commonly utilized piezoelectric materials are either toxic or nondegradable. Thus, implanted devices employing these materials raise a significant concern in terms of safety issues and often require an invasive removal surgery, which can damage directly interfaced tissues/organs. Here, we present a strategy for materials processing, device assembly, and electronic integration to 1) create biodegradable and biocompatible piezoelectric PLLA [poly(l-lactic acid)] nanofibers with a highly controllable, efficient, and stable piezoelectric performance, and 2) demonstrate device applications of this nanomaterial, including a highly sensitive biodegradable pressure sensor for monitoring vital physiological pressures and a biodegradable ultrasonic transducer for blood-brain barrier opening that can be used to facilitate the delivery of drugs into the brain. These significant applications, which have not been achieved so far by conventional piezoelectric materials and bulk piezoelectric PLLA, demonstrate the PLLA nanofibers as a powerful material platform that offers a profound impact on various medical fields including drug delivery, tissue engineering, and implanted medical devices.


Subject(s)
Absorbable Implants , Micro-Electrical-Mechanical Systems/instrumentation , Nanofibers/chemistry , Transducers , Drug Delivery Systems , Electricity , Electronics , Equipment Design , Monitoring, Physiologic/instrumentation , Pressure , Prostheses and Implants , Tissue Engineering , Ultrasonics
3.
Genetics ; 202(2): 639-60, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26645816

ABSTRACT

The Eph receptors and their cognate ephrin ligands play key roles in many aspects of nervous system development. These interactions typically occur within an individual tissue type, serving either to guide axons to their terminal targets or to define boundaries between the rhombomeres of the hindbrain. We have identified a novel role for the Caenorhabditis elegans ephrin EFN-4 in promoting primary neurite outgrowth in AIY interneurons and D-class motor neurons. Rescue experiments reveal that EFN-4 functions non-cell autonomously in the epidermis to promote primary neurite outgrowth. We also find that EFN-4 plays a role in promoting ectopic axon branching in a C. elegans model of X-linked Kallmann syndrome. In this context, EFN-4 functions non-cell autonomously in the body-wall muscle and in parallel with HS modification genes and HSPG core proteins. This is the first report of an epidermal ephrin providing a developmental cue to the nervous system.


Subject(s)
Axons/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Ephrins/genetics , Ephrins/metabolism , Heparan Sulfate Proteoglycans/metabolism , Animals , Cell Line , Gene Expression , Gene Knock-In Techniques , Humans , Interneurons/metabolism , Models, Biological , Motor Neurons/metabolism , Mutation , Neurogenesis/genetics , Neurons/metabolism , Phenotype , Receptors, Eph Family/genetics , Receptors, Eph Family/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL