Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Bioprocess Biosyst Eng ; 44(7): 1477-1490, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33682015

ABSTRACT

The development of new strategies in microalgal studies represents an outstanding opportunity to mitigate environmental problems coupled with biomass production at a reduced cost. Here we present a combined bioprocess for the treatment of rice vinasse using immobilized cyanobacteria Synechococcus pevalekii in alginate beads followed by the use of the treated vinasse as a culture medium for Dunaliella salina biomass production. Cyanobacterial-alginate beads showed a chlorophyll a production of 0.68 × 10-3 mg bead-1 and a total carotenoid production of 0.64 × 10-3 mg bead-1. The first step showed a decrease in nitrate (91%), total solids (29%), and ions. Addition of treated vinasse into D. salina cultivation resulted in a significant increase in cell replication of about 175% (optimized cultivation). The use of natural seawater drastically reduced the medium cost to US$4.75 per m3 and the addition of treated vinasse has the potential to reduce it even more (up to 69%). This study not only provides an insight on the use of cyanobacteria for rice vinasse treatment but also demonstrates a promising lower-cost medium for marine microalgal biomass production with biotechnological purposes.


Subject(s)
Alginates/chemistry , Biotechnology/economics , Biotechnology/methods , Oryza/metabolism , Synechococcus/metabolism , Biofuels/economics , Biomass , Bioreactors , Carotenoids , Chlorophyceae , Chlorophyll/chemistry , Chlorophyll A , Culture Media , Cyanobacteria/metabolism , Ions , Microalgae/growth & development , Microscopy, Electron, Scanning , Nitrates/chemistry , Pigmentation , Salts
SELECTION OF CITATIONS
SEARCH DETAIL
...