Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Article in English | MEDLINE | ID: mdl-38915449

ABSTRACT

Background: Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. There is no effective treatment for neurodegenerative diseases. Snake venoms are a cocktail of proteins and peptides with great therapeutic potential and might be useful in the treatment of neurodegenerative diseases. Crotapotin is the acid chain of crotoxin, the major component of Crotalus durissus collilineatus venom. PD is characterized by low levels of neurotrophins, and synaptic and axonal degeneration; therefore, neurotrophic compounds might delay the progression of PD. The neurotrophic potential of crotapotin has not been studied yet. Methods: We evaluated the neurotrophic potential of crotapotin in untreated PC12 cells, by assessing the induction of neurite outgrowth. The activation of the NGF signaling pathway was investigated through pharmacological inhibition of its main modulators. Additionally, its neuroprotective and neurorestorative effects were evaluated by assessing neurite outgrowth and cell viability in PC12 cells treated with the dopaminergic neurotoxin MPP+ (1-methyl-4-phenylpyridinium), known to induce Parkinsonism in humans and animal models. Results: Crotapotin induced neuritogenesis in PC12 cells through the NGF-signaling pathway, more specifically, by activating the NGF-selective receptor trkA, and the PI3K/Akt and the MAPK/ERK cascades, which are involved in neuronal survival and differentiation. In addition, crotapotin had no cytotoxic effect and protected PC12 cells against the inhibitory effects of MPP+ on cell viability and differentiation. Conclusion: These findings show, for the first time, that crotapotin has neurotrophic/neuroprotective/neurorestorative potential and might be beneficial in Parkinson's disease. Additional studies are necessary to evaluate the toxicity of crotapotin in other cell models.

2.
Naunyn Schmiedebergs Arch Pharmacol ; 396(8): 1787-1796, 2023 08.
Article in English | MEDLINE | ID: mdl-36843128

ABSTRACT

Doxycycline (DOX) is a widely used antibiotic that is able to cross the blood-brain barrier. Several studies have shown its neuroprotective effect against neurodegeneration and have associated it with antioxidant, anti-apoptotic, and anti-inflammatory mechanisms. We have recently demonstrated that DOX mimics nerve growth factor (NGF) signaling in PC12 cells. However, the involvement of this mechanism in the neuroprotective effect of DOX is unknown. Axonal degeneration and synaptic loss are key events at the early stages of neurodegeneration, and precede the neuronal death in neurodegenerative diseases, including Parkinson's disease (PD). Therefore, the regeneration of the axonal and synaptic network might be beneficial in PD. The effect of DOX in PC12 cells treated with the Parkinsonian neurotoxin 1-methyl-4-phenylpyridinium (MPP+) was addressed. Doxycycline reduced the inhibition of neuritogenesis induced by MPP+, even in cells deprived of NGF. The mechanism involved the upregulation of GAP-43, synapsin I, ß-III-tubulin, F-actin, and neurofilament-200, proteins that are associated with axonal and synaptic plasticity. Considering the role of axonal degeneration and synaptic loss at the initial stages of PD, the recent advances in early diagnosis of neurodegeneration, and the advantages of drug repurposing, doxycycline is a promising candidate to treat PD.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Rats , Animals , Humans , Up-Regulation , Doxycycline/pharmacology , Doxycycline/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Nerve Growth Factor/metabolism , Nerve Growth Factor/therapeutic use , Proteins/metabolism , Parkinson Disease/drug therapy , PC12 Cells , Tubulin/metabolism , 1-Methyl-4-phenylpyridinium/toxicity , 1-Methyl-4-phenylpyridinium/therapeutic use
3.
Naunyn Schmiedebergs Arch Pharmacol ; 395(6): 659-672, 2022 06.
Article in English | MEDLINE | ID: mdl-35246694

ABSTRACT

Neurodegenerative diseases are characterized by progressive loss of the structure and function of specific neuronal populations, and have been associated with reduced neurotrophic support. Neurotrophins, like NGF (nerve growth factor), are endogenous proteins that induce neuritogenesis and modulate axonal growth, branching, and synapsis; however, their therapeutic application is limited mainly by low stability, short half-life, and inability to cross the blood-brain barrier (BBB). Small neurotrophic molecules that have suitable pharmacokinetics and are able to cross the BBB are potential candidates for neuroprotection. Baccharin is a bioactive small molecule isolated from Brazilian green propolis. In the present study, we investigated the neurotrophic and neuroprotective potential of baccharin in the PC12 cell neuronal model. We used pharmacological inhibitors (K252a, LY294002, and U0126), and ELISA (phospho-trkA, phospho-Akt, and phospho-MEK) to investigate the involvement of trkA receptor, PI3k/Akt pathway, and MAPK/Erk pathway, respectively. Additionally, we evaluated the expression of axonal (GAP-43) and synaptic (synapsin I) proteins by western blot. The results showed that baccharin induces neuritogenesis in NGF-deprived PC12 cells, through activation of trkA receptor and the downstream signaling cascades (PI3K/Akt and MAPK/ERK), which is the same neurotrophic pathway activated by NGF in PC12 cells and neurons. Baccharin also induced the expression of GAP-43 and synapsin I, which mediate axonal and synaptic plasticity, respectively. Additionally, in silico predictions of baccharin showed favorable physicochemical properties, pharmacokinetics, drug-likeness, and medicinal chemistry friendliness. Altogether, these findings suggest that baccharin is a promising neurotrophic agent whose therapeutic application in neurodegeneration should be further investigated.


Subject(s)
Nerve Growth Factor , Propolis , Animals , Brazil , GAP-43 Protein/metabolism , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , PC12 Cells , Phosphatidylinositol 3-Kinases/metabolism , Propolis/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Rats , Receptor, trkA/metabolism , Signal Transduction , Synapsins/metabolism , Trichothecenes
4.
Chem Biol Interact ; 341: 109454, 2021 May 25.
Article in English | MEDLINE | ID: mdl-33798505

ABSTRACT

Doxycycline has been used as antibiotic since the 1960s. Recently, studies have shown that doxycycline is neuroprotective in models of neurodegenerative diseases and brain injuries, mainly due to anti-inflammatory and anti-apoptotic effects. However, it is not known if doxycycline has neurotrophic potential, which is relevant, considering the role of axonal degeneration at the early stages of neurodegeneration in Alzheimer's disease, Amyotrophic Lateral Sclerosis and Parkinson's disease as well as in normal aging. Axons are preceded by the formation of neurites, the hallmark of the neuronal differentiation induced by neurotrophins like NGF. Therefore, the modulation of neurotrophin receptors aimed at formation and regeneration of axons has been proposed as a strategy to delay the progression of neurodegeneration and has gained relevance as new techniques for early diagnosis arise. Based on these premises, we investigated the potential of doxycycline to mimic the effects of Nerve Growth Factor (NGF) with focus on the signaling pathways and neuronal modulators of neurite initiation, growth and branching. We used PC12 cells, a neuronal model widely employed to study the neurotrophic pathways and mechanisms induced by NGF. Results showed that doxycycline induced neurite outgrowth via activation of the trkA receptor and the downstream signaling pathways, PI3K/Akt and MAPK/ERK, without inducing the expression of NGF. Doxycycline also increased the expression of GAP-43, synapsin I and NF200, proteins involved in axonal and synaptic plasticity. Altogether, these data demonstrate, for the first time, the neurotrophic potential of doxycycline, which might be useful to restore the neuronal connectivity lost at the initial phase of neurodegeneration.


Subject(s)
Anti-Bacterial Agents/pharmacology , Doxycycline/pharmacology , Nerve Growth Factor/metabolism , Animals , Carbazoles/pharmacology , Cell Survival/drug effects , GAP-43 Protein/metabolism , Indole Alkaloids/pharmacology , MAP Kinase Signaling System/drug effects , Nerve Growth Factor/pharmacology , Neurofilament Proteins/metabolism , Neuronal Outgrowth/drug effects , Neuroprotective Agents/pharmacology , PC12 Cells , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Receptor, trkA/antagonists & inhibitors , Receptor, trkA/metabolism , Signal Transduction/drug effects , Synapsins/metabolism
5.
Neurotox Res ; 39(3): 886-896, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33666886

ABSTRACT

Carvacrol (CARV) is a phytochemical widely used as flavoring, preservative, and fragrance in food and cosmetic industries. CARV is able to cross the blood-brain barrier (BBB) and has demonstrated protective potential against neurodegenerative diseases by several mechanisms, including antioxidant, anti-inflammatory, anticholinesterase, and antiapoptotic effects. However, it is not known whether CARV is able to modulate axonal and synaptic plasticity, crucial events in cognition, memory, and learning. Abnormalities in axonal and synaptic plasticity, low levels of neurotrophins, and bioenergetic failure have been associated with the pathogenesis of neurodegenerative diseases, including Parkinson's (PD) and Alzheimer's diseases (ADs). Small lipophilic molecules with neurotrophic activity might be able to restore the axonal and synaptic networks that are lost in neurodegenerative processes. Therefore, this study investigated the neurotrophic potential of CARV in PC12 cell-based neuronal model. Carvacrol induced neurite outgrowth by activating the NGF high-affinity trkA receptor and the downstream PI3K-AKT and MAPK-ERK pathways, without depending on NGF. In addition, CARV increased the expression of proteins involved in neuronal plasticity (ß-tubulin III, F-actin, 200-kDa neurofilament, GAP-43 and synapsin-I) and improved bioenergetics (AMPKα, p-AMPKα, and ATP). Our study showed, for the first time, a promising neurotrophic mechanism of CARV that could be beneficial in neurodegenerative and neurological diseases.


Subject(s)
Axons/drug effects , Cymenes/pharmacology , Nerve Growth Factors/pharmacology , Nerve Regeneration/drug effects , Synapses/drug effects , Animals , Axons/physiology , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Nerve Growth Factor/pharmacology , Nerve Regeneration/physiology , PC12 Cells , Rats , Synapses/physiology
6.
J Pharm Pharmacol ; 72(10): 1427-1435, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32602113

ABSTRACT

OBJECTIVES: To investigate S-adenosyl-methyonine (SAM) effects on PC12 cells viability and neuritogenesis treated with MPP+ (1-methyl-4-phenylpyridinium). METHODS: PC12 cell viability test (MTT assay) in DMEM medium with SAM and/or MPP+; PC12 cell neuritogenesis test in F-12K medium with nerve growth factor (NGF); DNMT activity in PC12 cells (DNMT Activity Assay Kit) with SAM and/or MPP+. KEY FINDINGS: (1) MPP+ decreased cell viability; (2) SAM did not affect cell viability per se, but it increased MPP+ neurotoxicity when co-incubated with the neurotoxin, an effect abolished by DNA methyltransferases (DNMT) inhibitors; (3) pretreatment with SAM for 30 min or 24 h before MPP+ addition had no effect on cell viability. Neuritogenesis: Treatment with SAM for 30 min or 24 h (1) increased cell differentiation per se, (2) increased NGF differentiating effects (additive effect) and (3) blocked the neuritogenesis impairment induced by MPP+. SAM with MPP+ increased the DNMT activity, whereas SAM alone or MPP+ alone did not. CONCLUSIONS: (1) SAM might induce neurotoxic or neuroprotective effects on PC12 cells, depending on the exposure conditions; (2) DNMT inhibitors might attenuate the MPP+ exacerbation toxicity induced by SAM; (3) DNA methylation might be involved in the observed effects of SAM (needs further investigation).


Subject(s)
1-Methyl-4-phenylpyridinium/toxicity , Dopaminergic Neurons/drug effects , Neurotoxins/toxicity , S-Adenosylmethionine/toxicity , 1-Methyl-4-phenylpyridinium/administration & dosage , Animals , Cell Survival/drug effects , Cell Survival/physiology , Dopaminergic Neurons/pathology , Dose-Response Relationship, Drug , Neurotoxins/administration & dosage , PC12 Cells , Rats , S-Adenosylmethionine/administration & dosage
7.
Food Chem Toxicol ; 136: 111079, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31891754

ABSTRACT

Cisplatin has dramatically improved the survival rate of cancer patients, but it has also increased the prevalence of hearing and neurological deficits in this population. Cisplatin induces ototoxicity, peripheral (most prevalent) and central (rare) neurotoxicity. This review addresses the ototoxicity and the neurotoxicity associated with cisplatin-based chemotherapy, providing an integrated view of the potential protective agents that have been evaluated in vitro, in vivo and in clinical trials, their targets and mechanisms of protection and their effects on the antitumor activity of cisplatin. So far, the findings are insufficient to support the use of any oto- or neuroprotective agent before, during or after cisplatin chemotherapy. Despite their promising effects in vitro and in animal studies, many agents have not been evaluated in clinical trials. Additionally, the clinical trials have limitations concerning the sample size, controls, measurement, heterogeneous groups, several arms of treatment, short follow-up or no blinding. Besides that, for most agents, the effects on the antitumor activity of cisplatin have not been evaluated in tumor-bearing animals, which discourages clinical trials. Further well-designed randomized controlled clinical trials are necessary to definitely demonstrate the effectiveness of the oto- or neuroprotective agents proposed by animal and in vitro studies.


Subject(s)
Antineoplastic Agents/adverse effects , Cisplatin/adverse effects , Neurotoxicity Syndromes/prevention & control , Ototoxicity/prevention & control , Protective Agents/administration & dosage , Animals , Antineoplastic Agents/therapeutic use , Cisplatin/therapeutic use , Humans , Neoplasms/drug therapy , Neurotoxicity Syndromes/etiology , Ototoxicity/etiology
8.
Neurotox Res ; 36(1): 175-192, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31016689

ABSTRACT

Peripheral sensory neuropathy (PSN) is a well-known side effect of cisplatin characterized by axonal damage. In the early stage of neurotoxicity, cisplatin affects proteins that modulate neurite outgrowth and neuroplasticity, without inducing mitochondrial damage or apoptosis. There are no preventive therapies for cisplatin-induced peripheral neuropathy; therefore, measures to improve axonal growth and connectivity would be beneficial. Caffeic acid phenethyl ester (CAPE) is a bioactive component of propolis with neurotrophic and neuroprotective activities. We have recently showed that CAPE protects against cisplatin-induced neurotoxicity by activating NGF high-affinity receptors (trkA) and inducing neuroplasticity. We have now assessed other potential early targets of cisplatin and additional mechanisms involved in the neuroprotection of CAPE. Cisplatin reduced axonal cytoskeletal proteins (F-actin and ß-III-tubulin) without inducing oxidative damage in PC12 cells. It also reduced energy-related proteins (AMPK α, p-AMPK α, and SIRT1) and glucose uptake. At this stage of neurotoxicity, glutamate excitotoxicity is not involved in the toxicity of cisplatin. CAPE attenuated the downregulation of the cytoskeleton and energy-related markers as well as SIRT1 and phosphorylated AMPK α. Moreover, the neuroprotective mechanism of CAPE also involves the activation of the neurotrophic signaling pathways MAPK/Erk and PI3k/Akt. The PI3K/Akt pathway is involved in the upregulation of SIRT1 induced by CAPE, but not in the upregulation of cytoskeletal proteins. Altogether, these findings suggest that the neuroprotective effect of CAPE against cisplatin-induced neurotoxicity involves both (a) a neurotrophic mechanism that mimics the mechanism triggered by the NGF itself and (b) a non-neurotrophic mechanism that upregulates the cytoskeletal proteins.


Subject(s)
Caffeic Acids/pharmacology , Cisplatin/toxicity , Neurons/drug effects , Neuroprotective Agents/pharmacology , Phenylethyl Alcohol/analogs & derivatives , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , Animals , COS Cells , Cell Differentiation/drug effects , Chlorocebus aethiops , Cytoskeletal Proteins/metabolism , Glucose/metabolism , MAP Kinase Signaling System/drug effects , Neurons/metabolism , PC12 Cells , Phenylethyl Alcohol/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Reactive Oxygen Species/metabolism , Sirtuin 1/metabolism
9.
Neurotox Res ; 35(1): 150-159, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30088187

ABSTRACT

Organophosphorus (OPs) compounds have been widely used in agriculture, industry, and household, and the neurotoxicity induced by them is still a cause of concern. The main toxic mechanism of OPs is the inhibition of acetylcholinesterase (AChE); however, the delayed neuropathy induced by OPs (OPIDN) is mediated by other mechanisms such as the irreversible inhibition of 70% of NTE activity (neuropathy target esterase) that leads to axonal degeneration. Liraglutide is a long-lasting GLP-1 analog clinically used as antidiabetic. Its neurotrophic and neuroprotective effects have been demonstrated in vitro and in experimental models of neurodegenerative diseases. As in OPIDN, axonal degeneration also plays a role in neurodegenerative diseases. Therefore, this study investigated the protective potential of liraglutide against the neurotoxicity of OPs by using mipafox as a neuropathic agent (at a concentration able to inhibit and age 70% of NTE activity) and a neuronal model with SH-SY5Y neuroblastoma cells, which express both esterases. Liraglutide protected cells against the neurotoxicity of mipafox by increasing neuritogenesis, the uptake of glucose, the levels of cytoskeleton proteins, and synaptic-plasticity modulators, besides decreasing the pro-inflammatory cytokine interleukin 1ß and caspase-3 activity. This is the first study to suggest that liraglutide might induce beneficial effects against the delayed, non-cholinergic neurotoxicity of OPs.


Subject(s)
Isoflurophate/analogs & derivatives , Liraglutide/pharmacology , Neuroprotective Agents/pharmacology , Pesticides/toxicity , Cell Line, Tumor , Glucose/metabolism , Humans , Hypoglycemic Agents/pharmacology , Interleukin-1beta/metabolism , Isoflurophate/toxicity , Neuronal Outgrowth/drug effects , Neuronal Outgrowth/physiology , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Neuroprotection/drug effects , Neuroprotection/physiology , Neurotoxicity Syndromes/drug therapy
10.
Neurotox Res ; 34(1): 32-46, 2018 07.
Article in English | MEDLINE | ID: mdl-29260495

ABSTRACT

Cisplatin is a highly effective chemotherapeutic drug that is toxic to the peripheral nervous system. Findings suggest that axons are early targets of the neurotoxicity of cisplatin. Although many compounds have been reported as neuroprotective, there is no effective treatment against the neurotoxicity of cisplatin. Caffeic acid phenethyl ester (CAPE) is a propolis component with neuroprotective potential mainly attributed to antioxidant and anti-inflammatory mechanisms. We have recently demonstrated the neurotrophic potential of CAPE in a cellular model of neurotoxicity related to Parkinson's disease. Now, we have assessed the neurotrophic and neuroprotective effects of CAPE against cisplatin-induced neurotoxicity in PC12 cells. CAPE (10 µM) attenuated the inhibition of neuritogenesis and the downregulation of markers of neuroplasticity (GAP-43, synapsin I, synaptophysin, and 200-kD neurofilament) induced by cisplatin (5 µM). This concentration of cisplatin does not affect cell viability, and it was used in order to assess the early neurotoxic events triggered by cisplatin. When a lethal dose of cisplatin was used (IC50 = 32 µM), CAPE (10 µM) increased cell viability. The neurotrophic effect of CAPE is not dependent on NGF nor is it additive to the effect of NGF, but it might involve the activation of the NGF-high-affinity receptors (trkA). The involvement of other neurotrophin receptors such as trkB and trkC is unlikely. This is the first study to demonstrate the protective potential of CAPE against the neurotoxicity of cisplatin and to suggest the involvement of trkA receptors in the neuroprotective mechanism of CAPE. Based on these findings, the beneficial effect of CAPE on cisplatin-induced peripheral neuropathy should be further investigated.


Subject(s)
Caffeic Acids/pharmacology , Cisplatin/pharmacology , Nerve Growth Factor/metabolism , Neuroprotective Agents/pharmacology , Neurotoxins/pharmacology , Phenylethyl Alcohol/analogs & derivatives , Signal Transduction/drug effects , Analysis of Variance , Animals , Cell Differentiation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , GAP-43 Protein/metabolism , Neuroblastoma/pathology , Neurofilament Proteins/metabolism , Neuronal Outgrowth/drug effects , PC12 Cells/drug effects , Phenylethyl Alcohol/pharmacology , Rats , Synapsins/metabolism , Synaptophysin/metabolism
11.
J Toxicol Environ Health A ; 80(19-21): 1086-1097, 2017.
Article in English | MEDLINE | ID: mdl-28862523

ABSTRACT

Some organophosphorus compounds (OP), including the pesticide mipafox, produce late onset distal axonal degeneration, known as organophosphorus-induced delayed neuropathy (OPIDN). The underlying mechanism involves irreversible inhibition of neuropathy target esterase (NTE) activity, elevated intracellular calcium levels, increased activity of calcium-activated proteases and impaired neuritogenesis. Voltage-gated calcium channels (VGCC) appear to play a role in several neurologic disorders, including OPIDN. Therefore, this study aimed to examine and compare the neuroprotective effects of T-type (amiloride) and L-type (nimodipine) VGCC blockers induced by the inhibitory actions of mipafox on neurite outgrowth and axonal proteins of retinoic-acid-stimulated SH-SY5Y human neuroblastoma cells, a neuronal model widely employed to determine the neurotoxicity attributed to OP. Both nimodipine and amiloride significantly blocked augmentation of intracellular calcium levels and activity of calpains, as well as decreased neurite length, number of differentiated cells, and lowered concentrations of growth-associated protein 43 (GAP-43) and synapsin induced by mipafox. Only nimodipine inhibited reduction of synaptophysin levels produced by mipafox. These findings demonstrate a role for calcium and VGCC in the impairment of neuronal plasticity mediated by mipafox. Data also demonstrated the neuroprotective potential of T-type and L-type VGCC blockers to inhibit OP-mediated actions, which may be beneficial to counteract cases of pesticide poisoning.


Subject(s)
Amiloride/pharmacology , Calcium Channel Blockers/pharmacology , Insecticides/toxicity , Isoflurophate/analogs & derivatives , Neurites/drug effects , Nimodipine/pharmacology , Axons/drug effects , Cell Line, Tumor , Humans , Isoflurophate/toxicity
12.
Chem Biol Interact ; 261: 86-95, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27871898

ABSTRACT

Beta-caryophyllene (BCP) is a phytocannabinoid whose neuroprotective activity has been mainly associated with selective activation of cannabinoid-type-2 (CB2) receptors, inhibition of microglial activation and decrease of inflammation. Here, we addressed the potential of BCP to induce neuritogenesis in PC12 cells, a model system for primary neuronal cells that express trkA receptors, respond to NGF and do not express CB2 receptors. We demonstrated that BCP increases the survival and activates the NGF-specific receptor trkA in NGF-deprived PC12 cells, without increasing the expression of NGF itself. The neuritogenic effect of BCP in PC12 cells was abolished by k252a, an inhibitor of the NGF-specific receptor trkA. Accordingly, BCP did not induce neuritogenesis in SH-SY5Y neuroblastoma cells, a neuronal model that does not express trkA receptors and do not respond to NGF. Additionally, we demonstrated that BCP increases the expression of axonal-plasticity-associated proteins (GAP-43, synapsin and synaptophysin) in PC12 cells. It is known that these proteins are up-regulated by NGF in neurons and neuron-like cells, such as PC12 cells. Altogether, these findings suggest that BCP activates trka receptors and induces neuritogenesis by a mechanism independent of NGF or cannabinoid receptors. This is the first study to show such effects of BCP and their beneficial role in neurodegenerative processes should be further investigated.


Subject(s)
Cannabinoids/pharmacology , Neurites/metabolism , Neurogenesis/drug effects , Receptors, Cannabinoid/metabolism , Sesquiterpenes/pharmacology , Animals , Carbazoles/pharmacology , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Humans , Indole Alkaloids/pharmacology , Nerve Growth Factor/pharmacology , Nerve Tissue Proteins/metabolism , Neurites/drug effects , PC12 Cells , Polycyclic Sesquiterpenes , Rats , Receptor, trkA/antagonists & inhibitors , Receptor, trkA/metabolism
13.
Toxicol In Vitro ; 39: 84-92, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27939611

ABSTRACT

Some organophosphorus compounds (OPs) induce a neurodegenerative disorder known as organophosphate-induced delayed neuropathy (OPIDN), which is related to irreversible inhibition of neuropathy target esterase (NTE) and impairment of neurite outgrowth. The present study addresses the effects of trichlorfon, mipafox (neuropathic model) and paraoxon (non-neuropathic model) on neurite outgrowth and neuroplasticity-related proteins in retinoic-acid-stimulated SH-SY5Y cells, a cellular model widely used to study the neurotoxicity of OPs. Mipafox (20µM) decreased cellular differentiation and the expression of neurofilament 200 (NF-200), growth associated- (GAP-43) and synaptic proteins (synapsin I and synaptophysin); whereas paraoxon (300µM) induced no effect on cellular differentiation, but significant decrease of NF-200, GAP-43, synapsin I and synaptophysin as compared to controls. However, the effects of paraoxon on these proteins were significantly lower than the effects of mipafox. In conclusion, axonal cytoskeletal proteins, as well as axonal plasticity-related proteins are more effectively affected by neuropathic (mipafox) than by non-neuropathic (paraoxon) OPs, suggesting that they might play a role in the mechanism of OPIDN. At high concentration (1mM), trichlorfon induced effects similar to those of the neuropathic OP, mipafox (20µM), but also caused high inhibition of AChE. Therefore, these effects are unlikely to occur in humans at non-lethal doses of trichlorfon.


Subject(s)
Axons/drug effects , Cholinesterase Inhibitors/toxicity , Insecticides/toxicity , Isoflurophate/analogs & derivatives , Paraoxon/toxicity , Trichlorfon/toxicity , Acetylcholinesterase/metabolism , Carboxylic Ester Hydrolases/metabolism , Cell Line, Tumor , Cytoskeleton/drug effects , GAP-43 Protein/metabolism , Humans , Isoflurophate/toxicity , L-Lactate Dehydrogenase/metabolism , Neuronal Plasticity , Synapsins/metabolism
14.
Neurochem Res ; 41(11): 2993-3003, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27473385

ABSTRACT

Cisplatin is the most effective and neurotoxic platinum chemotherapeutic agent. It induces a peripheral neuropathy characterized by distal axonal degeneration that might progress to degeneration of cell bodies and apoptosis. Most symptoms occur nearby distal axonal branches and axonal degeneration might induce peripheral neuropathy regardless neuronal apoptosis. The toxic mechanism of cisplatin has been mainly associated with DNA damage, but cisplatin might also affect neurite outgrowth. Nevertheless, the neurotoxic mechanism of cisplatin remains unclear. We investigated the early effects of cisplatin on axonal plasticity by using non-cytotoxic concentrations of cisplatin and PC12 cells as a model of neurite outgrowth and differentiation. PC12 cells express NGF-receptors (trkA) and respond to NGF by forming neurites, branches and synaptic vesicles. For comparison, we used a neuronal model (SH-SY5Y cells) that does not express trkA nor responds to NGF. Cisplatin did not change NGF expression in PC12 cells and decreased neurite outgrowth in both models, suggesting a NGF/trkA independent mechanism. It also reduced axonal growth (GAP-43) and synaptic (synapsin I and synaptophysin) proteins in PC12 cells, without inducing mitochondrial damage or apoptosis. Therefore, cisplatin might affect axonal plasticity before DNA damage, NGF/trkA down-regulation, mitochondrial damage or neuronal apoptosis. This is the first study to show that neuroplasticity-related proteins might be early targets of the neurotoxic action of cisplatin and their role on cisplatin-induced peripheral neuropathy should be investigated in vivo.


Subject(s)
Cisplatin/pharmacology , Nerve Growth Factor/metabolism , Neuronal Outgrowth/drug effects , Neuronal Plasticity/drug effects , Animals , Axons/drug effects , Axons/metabolism , Cell Differentiation/drug effects , Down-Regulation/drug effects , GAP-43 Protein/metabolism , Neurites/drug effects , Neurites/physiology , PC12 Cells , Rats , Receptors, Nerve Growth Factor/metabolism
15.
Chem Biol Interact ; 245: 59-65, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26751708

ABSTRACT

Cisplatin (Cisp) is an effective antitumor drug; however, it causes severe nephrotoxicity. Minimization of renal toxicity is essential, but the interference of nephroprotective agents, particularly antioxidants, with the antitumor activity of cisplatin is a general concern. We have recently demonstrated that the anti-hypertensive and antioxidant drug carvedilol (CV) protects against the renal damage and increases the survival of tumor-bearing mice without impairing the tumor reduction by cisplatin. So far, reports on the antioxidant mechanism of CV are controversial and there are no data on the impact of CV on the antitumor mechanisms of cisplatin. Therefore, this study addresses the effect of CV on mechanisms underlying the tumor control by cisplatin. CV did not interfere with the biodistribution or the genotoxicity of cisplatin. We also addressed the antioxidant mechanisms of CV and demonstrated that it does not neutralize free radicals, but is an efficient chelator of ferrous ions that are relevant catalyzers in cisplatin nephrotoxicity. The present data suggest that oxidative damage and genotoxicity play different roles in the toxicity of cisplatin on kidneys and tumors and therefore, some antioxidants might be safe as chemoprotectors. Altogether, our studies provide consistent evidence of the beneficial effect of CV on animals treated with cisplatin and might encourage clinical trials.


Subject(s)
Antineoplastic Agents/toxicity , Antioxidants/therapeutic use , Carbazoles/therapeutic use , Cisplatin/toxicity , Kidney/drug effects , Propanolamines/therapeutic use , Sarcoma 180/drug therapy , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Carbazoles/pharmacology , Carvedilol , Cisplatin/pharmacokinetics , Cisplatin/pharmacology , Kidney/pathology , Male , Propanolamines/pharmacology , Sarcoma 180/pathology , Tissue Distribution
16.
Toxicol In Vitro ; 30(1 Pt B): 231-40, 2015 Dec 25.
Article in English | MEDLINE | ID: mdl-26556726

ABSTRACT

Cannabidiol (CBD) is a non-psychoactive constituent of Cannabis sativa with potential to treat neurodegenerative diseases. Its neuroprotection has been mainly associated with anti-inflammatory and antioxidant events; however, other mechanisms might be involved. We investigated the involvement of neuritogenesis, NGF receptors (trkA), NGF, and neuronal proteins in the mechanism of neuroprotection of CBD against MPP(+) toxicity in PC12 cells. CBD increased cell viability, differentiation, and the expression of axonal (GAP-43) and synaptic (synaptophysin and synapsin I) proteins. Its neuritogenic effect was not dependent or additive to NGF, but it was inhibited by K252a (trkA inhibitor). CBD did not increase the expression of NGF, but protected against its decrease induced by MPP(+), probably by an indirect mechanism. We also evaluated the neuritogenesis in SH-SY5Y cells, which do not express trkA receptors. CBD did not induce neuritogenesis in this cellular model, which supports the involvement of trkA receptors. This is the first study to report the involvement of neuronal proteins and trkA in the neuroprotection of CBD. Our findings suggest that CBD has a neurorestorative potential independent of NGF that might contribute to its neuroprotection against MPP(+), a neurotoxin relevant to Parkinson's disease.


Subject(s)
1-Methyl-4-phenylpyridinium/toxicity , Cannabidiol/pharmacology , Nerve Tissue Proteins/biosynthesis , Neurites/drug effects , Neuroprotective Agents/pharmacology , Parkinson Disease/prevention & control , Receptor, trkA/physiology , Animals , Axons/metabolism , Humans , Nerve Growth Factor/physiology , Neurites/physiology , Neuroblastoma/pathology , PC12 Cells , Rats , Synapses/metabolism , Up-Regulation
17.
Toxicol In Vitro ; 29(5): 1079-87, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25910916

ABSTRACT

Organophosphorus-induced delayed neuropathy (OPIDN) is a central-peripheral distal axonopathy that develops 8-14 days after poisoning by a neuropathic organophosphorus compound (OP). Several OPs that caused OPIDN were withdrawn from the agricultural market due to induction of serious delayed effects. Therefore, the development of in vitro screenings able to differentiate neuropathic from non-neuropathic OPs is of crucial importance. Thus, the aim of this study was to evaluate the differences in the neurotoxic effects of mipafox (neuropathic OP) and paraoxon (non-neuropathic OP) in SH-SY5Y human neuroblastoma cells, using the inhibition and aging of neuropathy target esterase (NTE), inhibition of acetylcholinesterase (AChE), activation of calpain, neurite outgrowth, cytotoxicity and intracellular calcium as indicators. Additionally, the potential of fenamiphos and profenofos to cause acute and/or delayed effects was also evaluated. Mipafox had the lowest IC50 and induced the highest percentage of aging of NTE among the OPs evaluated. Only mipafox was able to cause calpain activation after 24 h of incubation. Concentrations of mipafox and fenamiphos which inhibited at least 70% of NTE were also able to reduce neurite outgrowth. Cytotoxicity was higher in non-neuropathic than in neuropathic OPs while the intracellular calcium levels were higher in neuropathic than in non-neuropathic OPs. In conclusion, the SH-SY5Y cellular model was selective to differentiate neuropathic from non-neuropathic OPs; fenamiphos, but not profenofos presented results compatible with the induction of OPIDN.


Subject(s)
Cholinesterase Inhibitors/toxicity , Insecticides/toxicity , Organophosphorus Compounds/toxicity , Acetylcholinesterase/metabolism , Calcium/metabolism , Calpain/metabolism , Carboxylic Ester Hydrolases/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Humans , Neurites/drug effects , Neurotoxicity Syndromes
18.
Chem Biol Interact ; 229: 119-31, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25665769

ABSTRACT

Both types of diabetes are associated with higher incidence of some types of cancer. Treating cancer in diabetic patients without aggravating diabetes-related complications is a challenge for clinicians. Additionally, little is known about how diabetes affects the treatment of cancer. One of the most effective chemotherapeutic drugs is cisplatin, which is nephrotoxic. Studies suggest that diabetes acts as a protective factor against the nephrotoxicity of cisplatin, but the mechanisms involved have not been elucidated yet. This renal protection has been attributed to decreased accumulation of cisplatin in the kidneys, which could be associated with deficient active transport of proximal tubular cells or to pharmacokinetic alterations caused by diabetes. However, it is uncertain if diabetes also compromises the antitumor activity of cisplatin. To address this issue, we developed a mouse model bearing cisplatin-induced nephrotoxicity, Sarcoma 180 and streptozotocin-induced diabetes. Four groups of treatment were defined: (i) control, (ii) diabetic, (iii) cisplatin and (iv) diabetic treated with cisplatin. The following parameters were evaluated: renal function, oxidative stress, apoptosis, renal histopathology, tumor remission, survival rate, genotoxicity and platinum concentration in tumor and several organs. Results indicate that diabetes protects against the renal damage induced by cisplatin, while also compromises its antitumor effectiveness. This is the first study to demonstrate this effect.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Cisplatin/pharmacokinetics , Cisplatin/therapeutic use , Diabetes Mellitus, Experimental/complications , Kidney Diseases/chemically induced , Sarcoma 180/complications , Sarcoma 180/drug therapy , Animals , Antineoplastic Agents/toxicity , Apoptosis/drug effects , Cell Line, Tumor , Cisplatin/toxicity , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Male , Mice , Oxidative Stress/drug effects , Sarcoma 180/metabolism , Sarcoma 180/pathology , Tissue Distribution
19.
Toxicol In Vitro ; 29(3): 522-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25596135

ABSTRACT

Organophosphorus-induced delayed neuropathy (OPIDN) is a central and peripheral distal axonopathy characterized by ataxia and paralysis. Trichlorfon and acephate are two organophosphorus compounds (OPs) used worldwide as insecticide and which cause serious effects to non-target species. Despite that, the neuropathic potential of these OPs remains unclear. The present study addressed the neurotoxic effects and the neuropathic potential of trichlorfon and acephate in SH-SY5Y human neuroblastoma cells, by evaluating inhibition and aging of neuropathy target esterase (NTE), inhibition of acetylcholinesterase (AChE), neurite outgrowth, cytotoxicity and intracellular calcium. Additionally, the effects observed were compared to those of two well-studied OPs: mipafox (known as neuropathic) and paraoxon (known as non-neuropathic). Trichlorfon and mipafox presented the lowest percentage of reactivation of inhibited NTE and the lowest ratio IC50 NTE/IC50 AChE. Moreover, they caused inhibition and aging of at least 70% of the activity of NTE at sub-lethal concentrations. All these effects have been associated with induction of OPIDN. When assayed at these concentrations, trichlorfon and mipafox reduced neurite outgrowth and increased intracellular calcium, events implicated in the development of OPIDN. Acephate caused effects similar to those caused by paraoxon (non-neuropathic OP) and was only able to inhibit 70% of NTE activity at lethal concentrations. These findings suggest that trichlorfon is potentially neuropathic, whereas acephate is not.


Subject(s)
Insecticides/toxicity , Organothiophosphorus Compounds/toxicity , Peripheral Nervous System Diseases/chemically induced , Phosphoramides/toxicity , Trichlorfon/toxicity , Calcium/metabolism , Carboxylic Ester Hydrolases/antagonists & inhibitors , Caspase 3/metabolism , Cell Line , Cholinesterase Inhibitors/toxicity , Enzyme Activation/drug effects , Humans , In Vitro Techniques , Neurites/drug effects
20.
Neurotoxicology ; 45: 131-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25454720

ABSTRACT

Neurite loss is an early event in neurodegenerative diseases; therefore, the regeneration of the network of neurites constitutes an interesting strategy of treatment for such disorders. Neurotrophic factors play a critical role in neuronal regeneration, but their clinical use is limited by their inability to cross the blood brain barrier. Oxidative and inflammatory events are implicated in neurodegeneration and antioxidant compounds have been suggested as potential neuroprotectors. The protective potential of CAPE (caffeic acid phenethyl ester) has been shown in different models of neurotoxicity (in vitro and in vivo) and it has been associated with immune-modulatory, antioxidant and anti-inflammatory properties; however, other mechanisms might be involved. The present study demonstrates that CAPE protects PC12 cells from the cellular death induced by the dopaminergic neurotoxin MPP(+) by increasing the network of neurites. Results showed that CAPE induced the formation, elongation and ramification of neurites in PC12 cells non-stimulated with NGF (nerve growth factor) and inhibited the shortage of neurites induced by the dopaminergic neurotoxin. These effects were associated with increased expression of neuron-typical proteins responsible for axonal growth (GAP-43) and synaptogenesis (synaptophysin and synapsin I). It is noteworthy that, unlike neurotrophins, CAPE would be able to cross the blood brain barrier and exert its neurotrophic effects in the brain. This study corroborates the therapeutic potential of CAPE in neurodegenerative diseases while proposes the involvement of neuroplasticity in the mechanism of neuroprotection.


Subject(s)
1-Methyl-4-phenylpyridinium/toxicity , Caffeic Acids/therapeutic use , Neurites/drug effects , Neuroprotective Agents/therapeutic use , Phenylethyl Alcohol/analogs & derivatives , Animals , Cell Death/drug effects , Cell Differentiation/drug effects , Dose-Response Relationship, Drug , GAP-43 Protein/metabolism , Nerve Growth Factor/metabolism , PC12 Cells , Phenylethyl Alcohol/therapeutic use , Rats , Synapsins/metabolism , Synaptophysin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL