Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Cell Endocrinol ; 401: 65-72, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-25486510

ABSTRACT

Oleic (OA) and linoleic (LA) fatty acids may be important regulators of Slc2a4 gene (GLUT4 protein) in skeletal muscle, thus participating in insulin resistance. We investigated the effect of OA and LA on the Slc2a4/GLUT4 expression in L6 muscle cells; as well as potential transcriptional regulators. OA and LA (50-400 µM) decreased the Slc2a4/GLUT4 expression in a dose-dependent way (maximum of ~50%, P < 0.001). OA and LA did not alter the Slc2a4-binding activity of oxysterols-receptor-LXR-alpha and peroxisome-proliferator-activated-receptor-gamma; but decreased the Slc2a4-binding activity of the sterol-regulatory-element-binding-protein-1 (SREBP1) enhancer (50%, P < 0.001), and increased (~30%, P < 0.001) the nuclear proteins binding into the Slc2a4-nuclear-factor-NF-kappa-B-binding site (repressor), and the phosphorylation of the inhibitors of nuclear-factor-kappa-B-kinase alpha/beta (150-300%, P < 0.001). In sum, OA and LA are potent inhibitors of the Slc2a4/GLUT4 expression in muscle cells; an effect involving reduced SREBP1 and increased NFKB transcriptional activity. These regulations may participate in the fatty acid-related pathophysiology of insulin resistance.


Subject(s)
Down-Regulation/drug effects , Glucose Transporter Type 4/genetics , Linoleic Acid/pharmacology , NF-kappa B/genetics , Oleic Acid/pharmacology , Sterol Regulatory Element Binding Protein 1/genetics , Animals , Cell Nucleus/metabolism , Cells, Cultured , Glucose Transporter Type 4/metabolism , Myoblasts, Skeletal/cytology , Myoblasts, Skeletal/metabolism , Promoter Regions, Genetic , Rats
SELECTION OF CITATIONS
SEARCH DETAIL