Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioconjug Chem ; 34(12): 2358-2365, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38051144

ABSTRACT

Aldehydes are attractive bioorthogonal coupling partners. The ease of manipulation of aldehydes and their orthogonality to other classes of bioorthogonal reactions have inspired the exploration of chemistries, which generate irreversible conjugates. Similarly, nitrones have been shown to be potent 1,3-dipoles in bioorthogonal reactions when paired with strained alkynes. Here, we combine the reactivity of nitrones with the simplicity of aldehydes using an N-allylglyoxylamide, in a cascade reaction with an N-alkylhydroxylamine to produce a bicyclic isoxazolidine. The reaction is found to be catalyzed by 5-methoxyanthranilic acid and proceeds at pH 7 with favorable kinetics. Using the HaloTag7 protein bearing an N-alkylhydroxylamine, we show the reaction to be bioorthogonal in a complex cell lysate and to proceed well at the surface of a HEK293 cell. Furthermore, the reaction is compatible with a typical strain-promoted alkyne-azide click reaction. The characteristics of this reaction suggest it will be a useful addition to the pallet of bioorthogonal reactions that have revolutionized chemical biology.


Subject(s)
Nitrogen Oxides , Proteins , Humans , HEK293 Cells , Proteins/chemistry , Nitrogen Oxides/chemistry , Alkynes/chemistry , Aldehydes , Azides/chemistry , Cycloaddition Reaction
2.
J Med Chem ; 65(18): 12386-12402, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36069672

ABSTRACT

An imidazolone → triazolone replacement addressed the limited passive permeability of a series of protein arginine methyl transferase 5 (PRMT5) inhibitors. This increase in passive permeability was unexpected given the increase in the hydrogen bond acceptor (HBA) count and topological polar surface area (TPSA), two descriptors that are typically inversely correlated with permeability. Quantum mechanics (QM) calculations revealed that this unusual effect was due to an electronically driven disconnect between TPSA and 3D-PSA, which manifests in a reduction in overall HBA strength as indicated by the HBA moment descriptor from COSMO-RS (conductor-like screening model for real solvation). HBA moment was subsequently deployed as a design parameter leading to the discovery of inhibitors with not only improved passive permeability but also reduced P-glycoprotein (P-gp) transport. Our case study suggests that hidden polarity as quantified by TPSA-3DPSA can be rationally designed through QM calculations.


Subject(s)
Arginine , Prostate-Specific Antigen , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Humans , Male , Permeability , Prostate-Specific Antigen/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Transferases/metabolism
3.
PLoS One ; 12(10): e0184378, 2017.
Article in English | MEDLINE | ID: mdl-29016609

ABSTRACT

Glycoprotein receptors are influenced by myriad intermolecular interactions at the cell surface. Specific glycan structures may interact with endogenous lectins that enforce or disrupt receptor-receptor interactions. Glycoproteins bound by multivalent lectins may form extended oligomers or lattices, altering the lateral mobility of the receptor and influencing its function through endocytosis or changes in activation. In this study, we have examined the interaction of Galectin-3 (Gal-3), a human lectin, with adhesion receptors. We measured the effect of recombinant Gal-3 added exogenously on the lateral mobility of the α5ß1 integrin on HeLa cells. Using single-particle tracking (SPT) we detected increased lateral mobility of the integrin in the presence of Gal-3, while its truncated C-terminal domain (Gal-3C) showed only minor reductions in lateral mobility. Treatment of cells with Gal-3 increased ß1-integrin mediated migration with no apparent changes in viability. In contrast, Gal-3C decreased both cell migration and viability. Fluorescence microscopy allowed us to confirm that exogenous Gal-3 resulted in reorganization of the integrin into larger clusters. We used a proteomics analysis to confirm that cells expressed endogenous Gal-3, and found that addition of competitive oligosaccharide ligands for the lectin altered the lateral mobility of the integrin. Together, our results are consistent with a Gal-3-integrin lattice model of binding and confirm that the lateral mobility of integrins is natively regulated, in part, by galectins.


Subject(s)
Endocytosis/genetics , Galectin 3/genetics , Integrin alpha5beta1/metabolism , Proteomics , Cell Adhesion/genetics , Cell Movement/drug effects , Galectin 3/administration & dosage , Gene Expression Regulation , Glycoproteins/genetics , Glycoproteins/metabolism , HeLa Cells , Humans , Integrin alpha5beta1/genetics , Oligosaccharides/metabolism , Protein Binding
4.
Carbohydr Res ; 417: 109-16, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26454791

ABSTRACT

A variety of applications in glycobiology exploit affinity chromatography through the immobilization of glycans to a solid support. Although several strategies are known, they may provide certain advantages or disadvantages in how the sugar is attached to the affinity matrix. Additionally, the products of some methods may be hard to characterize chemically due to non-specific reactions. The lack of specificity in standard immobilization reactions makes affinity chromatography with expensive oligosaccharides challenging. As a result, methods for specific and efficient immobilization of oligosaccharides remain of interest. Herein, we present a method for the immobilization of saccharides using N'-glycosylsulfonohydrazide (GSH) carbohydrate donors. We have compared GSH immobilization to known strategies, including the use of divinyl sulfone (DVS) and cyanuric chloride (CC), for the generation of affinity matrices. We compared immobilization methods by determining their immobilization efficiency, based on a comparison of the mass of immobilized carbohydrate and the concentration of active binding sites (determined using lectins). Our results indicate that immobilization using GSH donors can provide comparable amounts of carbohydrate epitopes on solid support while consuming almost half of the material required for DVS immobilization. The lectin binding capacity observed for these two methods suggests that GSH immobilization is more efficient. We propose that this method of oligosaccharide immobilization will be an important tool for glycobiologists working with precious glycan samples purified from biological sources.


Subject(s)
Chromatography, Affinity/instrumentation , Glycomics/instrumentation , Hydrazines/chemistry , Oligosaccharides/chemistry , Sepharose/chemistry , Binding Sites , Chromatography, Affinity/methods , Glycomics/methods , Plant Lectins/chemistry , Sulfones/chemistry , Triazines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...