Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters











Publication year range
1.
Proc Natl Acad Sci U S A ; 121(28): e2322917121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38959035

ABSTRACT

Functional analysis in mouse models is necessary to establish the involvement of a set of genetic variations in tumor development. A modeling platform to facilitate and cost-effectively analyze the role of multiple genes in carcinogenesis would be valuable. Here, we present an innovative strategy for lung mutagenesis using CRISPR/Cas9 ribonucleoproteins delivered via cationic polymers. This approach allows the simultaneous inactivation of multiple genes. We validate the effectiveness of this system by targeting a group of tumor suppressor genes, specifically Rb1, Rbl1, Pten, and Trp53, which were chosen for their potential to cause lung tumors, namely small cell lung carcinoma (SCLC). Tumors with histologic and transcriptomic features of human SCLC emerged after intratracheal administration of CRISPR/polymer nanoparticles. These tumors carried loss-of-function mutations in all four tumor suppressor genes at the targeted positions. These findings were reproduced in two different pure genetic backgrounds. We provide a proof of principle for simplified modeling of lung tumorigenesis to facilitate functional testing of potential cancer-related genes.


Subject(s)
CRISPR-Cas Systems , Lung Neoplasms , Mutagenesis , PTEN Phosphohydrolase , Small Cell Lung Carcinoma , Tumor Suppressor Protein p53 , Animals , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , PTEN Phosphohydrolase/genetics , Tumor Suppressor Protein p53/genetics , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Humans , Disease Models, Animal , Retinoblastoma-Like Protein p107/genetics , Retinoblastoma-Like Protein p107/metabolism , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism , Gene Editing/methods
2.
Int J Mol Sci ; 24(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37894963

ABSTRACT

There is a clear need to expand the toolkit of adequate mouse models and cell lines available for preclinical studies of high-grade neuroendocrine lung carcinoma (small cell lung carcinoma (SCLC) and large cell neuroendocrine carcinoma (LCNEC)). SCLC and LCNEC are two highly aggressive tumor types with dismal prognoses and few therapeutic options. Currently, there is an extreme paucity of material, particularly in the case of LCNEC. Given the lack of murine cell lines and transplant models of LCNEC, the need is imperative. In this study, we generated and examined new models of LCNEC and SCLC transplantable cell lines derived from our previously developed primary mouse LCNEC and SCLC tumors. RNA-seq analysis demonstrated that our cell lines and syngeneic tumors maintained the transcriptome program from the original transgenic primary tumor and displayed strong similarities to human SCLC or LCNEC. Importantly, the SCLC transplanted cell lines showed the ability to metastasize and mimic this characteristic of the human condition. In summary, we generated mouse cell line tools that allow further basic and translational research as well as preclinical testing of new treatment strategies for SCLC and LCNEC. These tools retain important features of their human counterparts and address the lack of LCNEC disease models.


Subject(s)
Carcinoma, Large Cell , Carcinoma, Neuroendocrine , Carcinoma, Small Cell , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Animals , Mice , Small Cell Lung Carcinoma/genetics , Carcinoma, Small Cell/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/pathology , Carcinoma, Large Cell/genetics , Carcinoma, Large Cell/pathology , Lung/pathology
3.
Cancers (Basel) ; 14(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35954335

ABSTRACT

Lung cancer remains the leading cause of cancer deaths worldwide. Among the Non-Small Cell Carcinoma (NSCLC) category, Adenocarcinoma (ADC) represents the most common type, with different reported driver mutations, a bunch of models described and therapeutic options. Meanwhile, Pulmonary Sarcomatoid Carcinoma (PSC) is one of the rarest, with very poor outcomes, scarce availability of patient material, no effective therapies and no models available for preclinical research. Here, we describe that the combined deletion of Pten and Trp53 in the lungs of adult conditional mice leads to the development of both ADC and PSC irrespective of the lung targeted cell type after naphthalene induced airway epithelial regeneration. Although this model shows long latency periods and incomplete penetrance for tumor development, it is the first PSC mouse model reported so far, and sheds light on the relationships between ADC and PSC and their cells of origin. Moreover, human ADC show strong transcriptomic similarities to the mouse PSC, providing a link between both tumor types and the human ADC.

4.
Cancers (Basel) ; 13(1)2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33375066

ABSTRACT

Neuroendocrine lung tumors comprise a range of malignancies that extend from benign tumorlets to the most prevalent and aggressive Small Cell Lung Carcinoma (SCLC). They also include low-grade Typical Carcinoids (TC), intermediate-grade Atypical Carcinoids (AC) and high-grade Large Cell Neuroendocrine Carcinoma (LCNEC). Optimal treatment options have not been adequately established: surgical resection when possible is the choice for AC and TC, and for SCLC chemotherapy and very recently, immune checkpoint inhibitors. Some mouse models have been generated based on the molecular alterations identified in genomic analyses of human tumors. With the exception of SCLC, there is a limited availability of (preclinical) models making their development an unmet need for the understanding of the molecular mechanisms underlying these diseases. For SCLC, these models are crucial for translational research and novel drug testing, given the paucity of human material from surgery. The lack of early detection systems for lung cancer point them out as suitable frameworks for the identification of biomarkers at the initial stages of tumor development and for testing molecular imaging methods based on somatostatin receptors. Here, we review the relevant models reported to date, their impact on the understanding of the biology of the tumor subtypes and their relationships, as well as the effect of the analyses of the genetic landscape of the human tumors and molecular imaging tools in their development.

5.
Sci Rep ; 10(1): 20357, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33203909

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Sci Rep ; 10(1): 12756, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32728067

ABSTRACT

Radionuclide generator systems can routinely provide radionuclides on demand such as 68Ga produced by a 68Ge/68Ga generator without the availability of an on-site accelerator or a research reactor. Thus, in this work nano-SnO2 was used to develop a new 68Ge/68Ga generator which was evaluated over a period of 17 months and 305 elution cycles. The elution yield was 91.1 ± 1.8% in the first 7 mL (1 M HCl as eluent) when the generator was new and then it decreased with time and use to 73.8 ± 1.9%. Around 80% of the elutable 68Ga activity was obtained in 1 mL and the 68Ge content in the eluate did not exceed 1 × 10-4% over the investigation period when it was eluted regularly. The described generator provided adequate results for radiolabelling of DOTA-TOC with direct use of eluate. In addition, [68Ga]Ga-DOTA-TOC was tested satisfactorily for in vivo tumor detection by microPET/CT imaging in a lung cancer mouse model.


Subject(s)
Gallium Radioisotopes/chemistry , Germanium/chemistry , Lung Neoplasms/diagnostic imaging , Nanoparticles/chemistry , Octreotide/analogs & derivatives , Positron Emission Tomography Computed Tomography/methods , Tin Compounds/chemistry , Animals , Disease Models, Animal , Isotope Labeling , Mice , Neuroendocrine Tumors/diagnostic imaging , Octreotide/chemistry , Radiopharmaceuticals/chemistry
7.
Mol Cell Oncol ; 7(2): 1702413, 2020.
Article in English | MEDLINE | ID: mdl-32158917

ABSTRACT

High-grade neuroendocrine lung carcinomas (LCNEC, SCLC) are recalcitrant cancers for which no optimal management has been achieved. We have recently described two models of LCNEC and SCLC developed upon inactivation of 4 tumor suppressors genes (Rb1 (RB transcriptional corepressor 1), Rbl1 (RB transcriptional corepressor like 1), Pten (phosphatase and tensin homolog), Trp53 (transformation-related protein 53), which provide a suitable frame for preclinical intervention. A defined model for LCNEC had not been previously reported.

8.
Proc Natl Acad Sci U S A ; 116(44): 22300-22306, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31611390

ABSTRACT

High-grade neuroendocrine lung malignancies (large-cell neuroendocrine cell carcinoma, LCNEC, and small-cell lung carcinoma, SCLC) are among the most deadly lung cancer conditions with no optimal clinical management. The biological relationships between SCLC and LCNEC are still largely unknown and a current matter of debate as growing molecular data reveal high heterogeneity with potential therapeutic consequences. Here we describe murine models of high-grade neuroendocrine lung carcinomas generated by the loss of 4 tumor suppressors. In an Rbl1-null background, deletion of Rb1, Pten, and Trp53 floxed alleles after Ad-CMVcre infection in a wide variety of lung epithelial cells produces LCNEC. Meanwhile, inactivation of these genes using Ad-K5cre in basal cells leads to the development of SCLC, thus differentially influencing the lung cancer type developed. So far, a defined model of LCNEC has not been reported. Molecular and transcriptomic analyses of both models revealed strong similarities to their human counterparts. In addition, a 68Ga-DOTATOC-based molecular-imaging method provides a tool for detection and monitoring the progression of the cancer. These data offer insight into the biology of SCLC and LCNEC, providing a useful framework for development of compounds and preclinical investigations in accurate immunocompetent models.


Subject(s)
Carcinoma, Small Cell/genetics , Genes, Tumor Suppressor , Lung Neoplasms/genetics , Neuroendocrine Tumors/genetics , Animals , Carcinoma, Small Cell/diagnostic imaging , Carcinoma, Small Cell/pathology , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Mice , Neuroendocrine Tumors/diagnostic imaging , Neuroendocrine Tumors/pathology , Octreotide/analogs & derivatives , Organometallic Compounds , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Positron-Emission Tomography , Radiopharmaceuticals , Retinoblastoma Binding Proteins/genetics , Retinoblastoma Binding Proteins/metabolism , Retinoblastoma-Like Protein p107/genetics , Retinoblastoma-Like Protein p107/metabolism , Transcriptome , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
9.
Clin Cancer Res ; 25(1): 390-402, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30242024

ABSTRACT

PURPOSE: Bladder cancer is a clinical and social problem due to its high incidence and recurrence rates. It frequently appears in elderly patients showing other medical comorbidities that hamper the use of standard chemotherapy. We evaluated the activity of CDK4/6 inhibitor as a new therapy for patients unfit for cisplatin (CDDP). EXPERIMENTAL DESIGN: Bladder cancer cell lines were tested for in vitro sensitivity to CDK4/6 inhibition. A novel metastatic bladder cancer mouse model was developed and used to test its in vivo activity. RESULTS: Cell lines tested were sensitive to CDK4/6 inhibition, independent on RB1 gene status. Transcriptome analyses and knockdown experiments revealed a major role for FOXM1 in this response. CDK4/6 inhibition resulted in reduced FOXM1 phosphorylation in vitro and in vivo and showed synergy with CDDP, allowing a significant tumor regression. FOXM1 exerted important oncogenic roles in bladder cancer. CONCLUSIONS: CDK4/6 inhibitors, alone or in combination, are a novel therapeutic strategy for patients with advanced bladder cancer previously classified as unfit for current treatment options.


Subject(s)
Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 6/genetics , Forkhead Box Protein M1/genetics , Urinary Bladder Neoplasms/drug therapy , Aged , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/pharmacology , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Female , Heterografts , Humans , Male , Mice , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Phosphorylation/drug effects , Progression-Free Survival , Protein Kinase Inhibitors/pharmacology , Retinoblastoma Binding Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL