Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 337: 125385, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34147770

ABSTRACT

In this study, two carotenoid-rich strains of the euryhaline microalga Tetraselmis striata CTP4 were isolated by random mutagenesis combined with selection via fluorescence activated cell sorting and growth on norflurazon. Both strains, ED5 and B11, showed an up to 1.5-fold increase in carotenoid contents as compared with the wildtype, independent of the growth conditions. More specifically, violaxanthin, ß-carotene and lutein contents reached as high as 1.63, 4.20 and 3.81 mg g-1 DW, respectively. Genes coding for phytoene synthase, phytoene desaturase, lycopene-ß-cyclase and ε-ring hydroxylase involved in carotenoid biosynthesis were found to be upregulated in ED5 and B11 cells as compared to the wildtype. Both strains showed higher contents of eicosapentaenoic acid as compared with those of the wildtype, reaching up to 4.41 and 2.88 mg g-1 DW, respectively. Overall, these results highlight the complexity of changes in carotenoid biosynthesis regulation that are required to improve pigment contents in microalgae.


Subject(s)
Fatty Acids, Omega-3 , Carotenoids , Gene Expression , Gene Expression Regulation, Plant , Heat-Shock Response , beta Carotene
2.
J Biotechnol ; 325: 15-24, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-33245925

ABSTRACT

As the periodic emission of light pulses by light emitting diodes (LEDs) is known to stimulate growth or induce high value biocompounds in microalgae, this flashing light regime was tested on growth and biochemical composition of the microalgae Nannochloropsis gaditana, Koliella antarctica and Tetraselmis chui. At low flashing light frequencies (e.g., 5 and 50 Hz, Duty cycle = 0.05), a strain-dependent growth inhibition and an accumulation of protein, polyunsaturated fatty acids, chlorophyll or carotenoids (lutein, ß-carotene, violaxanthin and neoxanthin) was observed. In addition, a 4-day application of low-frequency flashing light to concentrated cultures increased productivities of eicosapentaenoic acid (EPA) and specific carotenoids up to three-fold compared to continuous or high frequency flashing light (500 Hz, Duty cycle = 0.05). Therefore, applying low-frequency flashing light as finishing step in industrial production can increase protein, polyunsaturated fatty acids or pigment contents in biomass, leading to high-value algal products.


Subject(s)
Chlorophyta , Microalgae , Stramenopiles , Biomass , Fatty Acids , Fatty Acids, Unsaturated
3.
Sci Rep ; 8(1): 4689, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29549352

ABSTRACT

This work explored the biotechnological potential of the medicinal halophyte Artemisia campestris subsp. maritima (dune wormwood) as a source of health promoting commodities. For that purpose, infusions, decoctions and tinctures were prepared from roots and aerial-organs and evaluated for in vitro antioxidant, anti-diabetic and tyrosinase-inhibitory potential, and also for polyphenolic and mineral contents and toxicity. The dune wormwood extracts had high polyphenolic content and several phenolics were identified by ultra-high performance liquid chromatography-photodiode array-mass-spectrometry (UHPLC-PDA-MS). The main compounds were quinic, chlorogenic and caffeic acids, coumarin sulfates and dicaffeoylquinic acids; several of the identified phytoconstituents are here firstly reported in this A. campestris subspecies. Results obtained with this plant's extracts point to nutritional applications as mineral supplementary source, safe for human consumption, as suggested by the moderate to low toxicity of the extracts towards mammalian cell lines. The dune wormwood extracts had in general high antioxidant activity and also the capacity to inhibit α-glucosidase and tyrosinase. In summary, dune wormwood extracts are a significant source of polyphenolic and mineral constituents, antioxidants and α-glucosidase and tyrosinase inhibitors, and thus, relevant for different commercial segments like the pharmaceutical, cosmetic and/or food industries.


Subject(s)
Antioxidants/analysis , Artemisia/chemistry , Monophenol Monooxygenase/antagonists & inhibitors , Phytochemicals/analysis , Plant Preparations/chemistry , alpha-Glucosidases/metabolism , Antioxidants/pharmacology , Cell Line , Chromatography, High Pressure Liquid , Glycoside Hydrolase Inhibitors/analysis , Glycoside Hydrolase Inhibitors/pharmacology , Health Promotion , Hep G2 Cells , Humans , Phytochemicals/pharmacology , Plant Components, Aerial/chemistry , Plant Roots/chemistry , Tandem Mass Spectrometry , Teas, Herbal/analysis
4.
Food Chem Toxicol ; 107(Pt B): 581-589, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28428087

ABSTRACT

Aromatic halophyte plants are an outstanding source of bioactive compounds and natural products with potential use in the food industry. This work reports the in vitro antioxidant activity, toxicity, polyphenolic profile and mineral contents of infusions and decoctions from stems, leaves and flowers of Crithmum maritimum L., an aromatic and edible maritime halophyte (sea fennel). Aspalathus linearis (Burm.f.) Dahlg. (rooibos) herbal tea was used as a reference. Sea fennel's tisanes, particularly from leaves, were rich in phenolic compounds and five of them (p-hydroxybenzoic and ferulic acids, epicatechin, pyrocatechol and 4-hydroxybenzaldehyde) were here described in C. maritimum for the first time. Chlorogenic acid was the dominant phenolic determined. Na was the most abundant mineral in all tisanes followed by Ca and Mg in leaves' tisanes and K in flowers. Sea fennel's samples had a similar antioxidant activity than those from A. linearis, and had no significant toxicity towards four different mammalian cell lines. Altogether, our results suggest that sea fennel can be a source of products and/or molecules for the food industry with antioxidant properties and minerals in the form, for example, of innovative health-promoting herbal beverages.


Subject(s)
Antioxidants/analysis , Apiaceae/chemistry , Aspalathus/chemistry , Minerals/analysis , Pinus/chemistry , Plant Extracts/analysis , Beverages/analysis , Food Industry , Plant Leaves/chemistry
5.
Bioresour Technol ; 223: 175-183, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27792927

ABSTRACT

The ability of a recent isolate, Tetraselmis sp. CTP4, for nutrient removal from sewage effluents before and after the nitrification process under batch and continuous cultivation was studied. Biomass productivities in both wastewaters were similar under continuous conditions (0.343±0.053gL-1d-1) and nutrient uptake rates were maximal 31.4±0.4mgNL-1d-1 and 6.66±1.57mgP-PO43-L-1d-1 in WW before nitrification when cultivated in batch. Among batch treatments, cellular protein, carbohydrate and lipid levels shifted with aging cultures from 71.7±6.3 to 29.2±1.2%, 17.4±7.2 to 57.2±3.9% and 10.9±1.7 to 13.7±4.7%, respectively. In contrast, CTP4 cultivated continuously in Algal medium (control) showed lower biomass productivities (0.282gVSSL-1d-1) although improved lipid content (up to 20% lipids) in batch cultivation. Overall, Tetraselmis sp. CTP4 is promising for WW treatment as a replacement of the costly nitrification process, fixating more nutrients and providing a protein and carbohydrate-rich biomass as by-product.


Subject(s)
Chlorophyta/metabolism , Waste Management/methods , Wastewater , Biodegradation, Environmental , Biomass , Bioreactors , Carbohydrates/chemistry , Chlorophyta/growth & development , Cities , Lipids/chemistry , Sewage/chemistry , Wastewater/chemistry , Wastewater/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...