Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(12)2023 12 16.
Article in English | MEDLINE | ID: mdl-38140687

ABSTRACT

Parasitoid wasps are fundamental insects for the biological control of agricultural pests. Despite the importance of wasps as natural enemies for more sustainable and healthy agriculture, the factors that could impact their species richness, abundance, and fitness, such as viral diseases, remain almost unexplored. Parasitoid wasps have been studied with regard to the endogenization of viral elements and the transmission of endogenous viral proteins that facilitate parasitism. However, circulating viruses are poorly characterized. Here, RNA viromes of six parasitoid wasp species are studied using public libraries of next-generation sequencing through an integrative bioinformatics pipeline. Our analyses led to the identification of 18 viruses classified into 10 families (Iflaviridae, Endornaviridae, Mitoviridae, Partitiviridae, Virgaviridae, Rhabdoviridae, Chuviridae, Orthomyxoviridae, Xinmoviridae, and Narnaviridae) and into the Bunyavirales order. Of these, 16 elements were described for the first time. We also found a known virus previously identified on a wasp prey which suggests viral transmission between the insects. Altogether, our results highlight the importance of virus surveillance in wasps as its service disruption can affect ecology, agriculture and pest management, impacting the economy and threatening human food security.


Subject(s)
Parasites , Viruses , Wasps , Animals , Humans , Ecosystem , Virome
2.
Viruses ; 15(9)2023 08 31.
Article in English | MEDLINE | ID: mdl-37766257

ABSTRACT

This study reports the virome investigation of pollinator species and other floral visitors associated with plants from the south of Bahia: Aphis aurantii, Atrichopogon sp., Dasyhelea sp., Forcipomyia taiwana, and Trigona ventralis hoozana. Studying viruses in insects associated with economically important crops is vital to understand transmission dynamics and manage viral diseases that pose as threats for global food security. Using literature mining and public RNA next-generation sequencing data deposited in the NCBI SRA database, we identified potential vectors associated with Malvaceae plant species and characterized the microbial communities resident in these insects. Bacteria and Eukarya dominated the metagenomic analyses of all taxon groups. We also found sequences showing similarity to elements from several viral families, including Bunyavirales, Chuviridae, Iflaviridae, Narnaviridae, Orthomyxoviridae, Rhabdoviridae, Totiviridae, and Xinmoviridae. Phylogenetic analyses indicated the existence of at least 16 new viruses distributed among A. aurantii (3), Atrichopogon sp. (4), Dasyhelea sp. (3), and F. taiwana (6). No novel viruses were found for T. ventralis hoozana. For F. taiwana, the available libraries also allowed us to suggest possible vertical transmission, while for A. aurantii we followed the infection profile along the insect development. Our results highlight the importance of studying the virome of insect species associated with crop pollination, as they may play a crucial role in the transmission of viruses to economically important plants, such as those of the genus Theobroma, or they will reduce the pollination process. This information may be valuable in developing strategies to mitigate the spread of viruses and protect the global industry.


Subject(s)
Virome , Viruses , Humans , Bees , Animals , Phylogeny , Insecta , Viruses/genetics , Crops, Agricultural
3.
J Fungi (Basel) ; 9(3)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36983529

ABSTRACT

Viruses that infect fungi are known as mycoviruses and are characterized by the lack of an extracellular phase. In recent years, the advances on nucleic acids sequencing technologies have led to a considerable increase in the number of fungi-infecting viral species described in the literature, with a special interest in assessing potential applications as fungal biocontrol agents. In the present study, we performed a comprehensive review using Scopus, Web of Science, and PubMed databases to mine mycoviruses data to explore their molecular features and their use in biotechnology. Our results showed the existence of 267 mycovirus species, of which 189 are recognized by the International Committee on Taxonomy of Viruses (ICTV). The majority of the mycoviruses identified have a dsRNA genome (38.6%), whereas the Botourmiaviridae (ssRNA+) alone represents 14% of all mycoviruses diversity. Regarding fungal hosts, members from the Sclerotinicaeae appeared as the most common species described to be infected by mycoviruses, with 16 different viral families identified so far. It is noteworthy that such results are directly associated with the high number of studies and strategies used to investigate the presence of viruses in members of the Sclerotinicaeae family. The knowledge about replication strategy and possible impact on fungi biology is available for only a small fraction of the mycoviruses studied, which is the main limitation for considering these elements potential targets for biotechnological applications. Altogether, our investigation allowed us to summarize the general characteristics of mycoviruses and their hosts, the consequences, and the implications of this knowledge on mycovirus-fungi interactions, providing an important source of information for future studies.

4.
Pathogens ; 12(2)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36839559

ABSTRACT

Theobroma cacao is one of the main crops of economic importance in the world as the source of raw material for producing chocolate and derivatives. The crop is the main source of income for thousands of small farmers, who produce more than 80% of the world's cocoa supply. However, the emergence, re-emergence and proliferation of pathogens, such as Ceratocystis spp., the causative agent of Ceratocystis wilt disease and canker disease, have been affecting the sustainability of many crops. Fungal control is laborious, often depending on fungicides that are expensive and/or toxic to humans, prompting researchers to look for new solutions to counteract the proliferation of these pathogens, including the use of biological agents such as mycoviruses. In this study, we investigated the diversity of microorganisms associated with the T. cacao pathogens Ceratocystis cacaofunesta and Ceratocystis fimbriata with a focus on the virome using RNA sequencing data available in public databases. We used a comprehensive bioinformatics pipeline containing several steps for viral sequence enrichment and took advantage of an integrated assembly step composed of different assemblers followed by sequence similarity searches using NCBI nonredundant databases. Our strategy was able to identify four putative C. cacaofunesta viruses (hypovirus, sclerotimonavirus, alphapartitivirus and narnavirus) and six C. fimbriata viruses (three alphaendornaviruses, one victorivirus and two mitoviruses). All the viral sequences identified showed similarity to viral genomes in public databases only at the amino acid level, likely representing new viral species. Of note, we present the first report of viruses associated with the cacao pathogens C. cacaofunesta and C. fimbriata and the second report of viral species infecting members of the Ceratocystidaceae family. Our findings highlight the need for further prospective studies to uncover the real diversity of fungus-infecting viruses that can contribute to the development of new management strategies.

SELECTION OF CITATIONS
SEARCH DETAIL
...