Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Chempluschem ; : e202400025, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436967

ABSTRACT

Enzyme immobilization can offer a range of significant advantages, including reusability, and increased selectivity, stability, and activity. In this work, a central composite design (CCD) of experiments and response surface methodology (RSM) were used to study, for the first time, the L-asparaginase (ASNase) immobilization onto functionalized carbon xerogels (CXs). The best results were achieved using CXs obtained by hydrothermal oxidation with nitric acid and subsequent heat treatment in a nitrogen flow at 600 °C (CX-OX-600). Under the optimal conditions (81 min of contact time, pH 6.2 and 0.36 g/L of ASNase), an immobilization yield (IY) of 100 % and relative recovered activity (RRA) of 103 % were achieved. The kinetic parameters obtained also indicate a 1.25-fold increase in the affinity of ASNase towards the substrate after immobilization. Moreover, the immobilized enzyme retained 97 % of its initial activity after 6 consecutive reaction cycles. All these outcomes confirm the promising properties of functionalized CXs as support for ASNase, bringing new insights into the development of an efficient and stable immobilization platform for use in the pharmaceutical industry, food industry, and biosensors.

2.
Bioresour Technol ; 397: 130456, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38369081

ABSTRACT

Microorganisms, such as yeasts, filamentous fungi, bacteria, and microalgae, have gained significant attention due to their potential in producing commercially valuable natural carotenoids. In recent years, Phaffia rhodozyma yeasts have emerged as intriguing non-conventional sources of carotenoids, particularly astaxanthin and ß-carotene. However, the shift from academic exploration to effective industrial implementation has been challenging to achieve. This study aims to bridge this gap by assessing various scenarios for carotenoid production and recovery. It explores the use of ionic liquids (ILs) and bio-based solvents (ethanol) to ensure safe extraction. The evaluation includes a comprehensive analysis involving Life Cycle Assessment (LCA), biocompatibility assessment, and Techno-Economic Analysis (TEA) of two integrated technologies that utilize choline-based ILs and ethanol (EtOH) for astaxanthin (+ß-carotene) recovery from P. rhodozyma cells. This work evaluates the potential sustainability of integrating these alternative solvents within a yeast-based bioeconomy.


Subject(s)
Basidiomycota , beta Carotene , Saccharomyces cerevisiae , Carotenoids , Ethanol , Solvents , Xanthophylls
3.
Bioresour Technol ; 390: 129906, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37866770

ABSTRACT

This study aimed to produce carotenoids by Phaffia rhodozyma in a stirred-tank bioreactor under the influence of magnetic fields (MF) and to evaluate a sustainable approach to recover them from the yeast biomass. MF application proved to be effective in increasing 8.6 and 22.9 % of ß-carotene and astaxanthin production, respectively. Regarding solid-liquid extraction (SLE), the ability of aqueous and ethanolic solutions of protic ionic liquids (PILs) was determined. ß-carotene and astaxanthin recovery yields increased with the anion alkyl chain length hydrophobicity. [Pro][Oct]:EtOH (50 % v v-1) was selected as the effective solvent. Moreover, it led to improvement in carotenoid stability at different storage temperatures over time in comparison with the control. This study is one of the first to describe an effective and sustainable approach to move carotenoid production from shake flasks to a bioreactor under the influence of MF and recover carotenoids from P. rhodozyma biomass.


Subject(s)
Basidiomycota , beta Carotene , Carotenoids , Bioreactors , Ethanol , Saccharomyces cerevisiae
4.
Appl Microbiol Biotechnol ; 107(13): 4199-4215, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37233757

ABSTRACT

The attractive biological properties and health benefits of natural astaxanthin (AXT), including its antioxidant and anti-carcinogenic properties, have garnered significant attention from academia and industry seeking natural alternatives to synthetic products. AXT, a red ketocarotenoid, is mainly produced by yeast, microalgae, wild or genetically engineered bacteria. Unfortunately, the large fraction of AXT available in the global market is still obtained using non-environmentally friendly petrochemical-based products. Due to the consumers concerns about synthetic AXT, the market of microbial-AXT is expected to grow exponentially in succeeding years. This review provides a detailed discussion of AXT's bioprocessing technologies and applications as a natural alternative to synthetic counterparts. Additionally, we present, for the first time, a very comprehensive segmentation of the global AXT market and suggest research directions to improve microbial production using sustainable and environmentally friendly practices. KEY POINTS: • Unlock the power of microorganisms for high value AXT production. • Discover the secrets to cost-effective microbial AXT processing. • Uncover the future opportunities in the AXT market.


Subject(s)
Antioxidants , Genetic Engineering , Xanthophylls , Yeasts
5.
Bioprocess Biosyst Eng ; 46(1): 147-156, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36437377

ABSTRACT

Consumer choice is typically influenced by color, leading to an increase in the use of artificial colorants by industry. However, several artificial colorants have been banned due to their harmful effects on human health and the environment, leading to increased interest in colorants from natural sources. Natural colorants can be found in plants, insects, and microorganisms. The importance of evaluating the technical and cost feasibility for the production of natural colorants are important factors for the replacement of artificial counterpart. Therefore, it is highly beneficial to predict the productivity of microbial colorants. The use of statistical methods that generate polynomial models through multiple regressions can provide information of interest about a bioprocess. However, modeling and control of biological processes require complex systems models, because they are nonlinear and non-deterministic systems. In this regard, artificial neural networks are suitable for estimating bioprocess variables with systems modeling. In this work, two different strategies were developed to predict the production of red colorants by Talaromyces amestolkiae, namely simulation by artificial neural networks (ANN) and response surface methodology (RSM). The results showed that the colorant concentration predicted by ANN is closer to the experimental data than that predicted by polynomial models fitted by multiple regression. Thus, this work suggests that the use of ANN can identify the initial conditions of the culture parameters that have the greatest influence on colorant production and can be a tool to be employed to improve the production of biotechnological products, such as microbial colorants.


Subject(s)
Biotechnology , Talaromyces , Humans , Biotechnology/methods , Neural Networks, Computer
6.
Crit Rev Food Sci Nutr ; 63(32): 11211-11225, 2023.
Article in English | MEDLINE | ID: mdl-35766952

ABSTRACT

Microorganisms such as bacteria, microalgae and fungi, are natural and rich sources of several valuable bioactive antioxidant's compounds, including carotenoids. Among the carotenoids with antioxidant properties, astaxanthin can be highlighted due to its pharmaceutical, feed, food, cosmetic and biotechnological applications. The best-known producers of astaxanthin are yeast and microalgae cells that biosynthesize this pigment intracellularly, requiring efficient and sustainable downstream procedures for its recovery. Conventional multi-step procedures usually involve the consumption of large amounts of volatile organic compounds (VOCs), which are regarded as toxic and hazardous chemicals. Considering these environmental issues, this review is focused on revealing the potential of unconventional extraction procedures [viz., Supercritical Fluid Extraction (SFE), Ultrasound-Assisted Extraction (UAE), Microwave-Assisted Extraction (MAE), High-Pressure Homogenization (HPH)] combined with alternative green solvents (biosolvents, eutectic solvents and ionic liquids) for the recovery of microbial-based astaxanthin from microalgae (such as Haematococcus pluvialis) and yeast (such as Phaffia rhodozyma) cells. The principal advances in the area, process bottlenecks, solvent selection and strategies to improve the recovery of microbial astaxanthin are emphasized. The promising recovery yields using these environmentally friendly procedures in lab-scale are good indications and directions for their effective use in biotechnological processes for the production of commercial feed and food ingredients like astaxanthin.


Subject(s)
Antioxidants , Microalgae , Biomass , Saccharomyces cerevisiae , Carotenoids , Solvents/chemistry
7.
Crit Rev Food Sci Nutr ; 63(13): 1862-1876, 2023.
Article in English | MEDLINE | ID: mdl-34433348

ABSTRACT

Astaxanthin (AXT) is a natural xanthophyll with strong antioxidant, anticancer and antimicrobial activities, widely used in the food, feed, pharmaceutical and nutraceutical industries. So far, 95% of the AXT global market is produced by chemical synthesis, but growing customer preferences for natural products are currently changing the market for natural AXT, highlighting the production from microbially-based sources such as the yeast Phaffia rhodozyma. The AXT production by P. rhodozyma has been studied for a long time at a laboratory scale, but its use in industrial-scale processes is still very scarce. The optimization of growing conditions as well as an effective integration of upstream-downstream operations into P. rhodozyma-based AXT processes has not yet been fully achieved. With this critical review, we scrutinized the main approaches for producing AXT using P. rhodozyma strains, highlighting the impact of using conventional and non-conventional procedures for the extraction of AXT from yeast cells. In addition, we also pinpointed research directions, for example, the use of low-cost residues to improve the economic and environmental sustainability of the bioprocess, the use of environmentally/friendly and low-energetic integrative operations for the extraction and purification of AXT, as well as the need of further human clinical trials using yeast-based AXT.


Subject(s)
Basidiomycota , Saccharomyces cerevisiae , Humans , Xanthophylls , Biotechnology , Basidiomycota/chemistry
8.
Crit Rev Biotechnol ; 43(4): 540-558, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35430937

ABSTRACT

The demand for food, feed, cosmeceutical, and nutraceutical supplements/additives from natural sources has been rapidly increasing, with expectations for a faster expansion than the growth of the global markets in the coming years. In this framework, a particular interest is given to carotenoids due to their outstanding antioxidant activities, particularly the xanthophylls class. Torularhodin is one of these carotenoids that stands out for its multifunctional role as: antioxidant, anticancer and antimicrobial, yet its commercial potential is still unexplored. Although most xanthophylls can be naturally found in: microbial, plant and animal sources, torularhodin is only produced by microbial species, especially red oleaginous yeast. The microbial production of xanthophylls has many advantages as compared to other natural sources, such as: the need for low production area, easier extraction, high yields (at optimum operating conditions), and low (or no) seasonal, climatic, and geographic variation dependency. Due to the importance of natural products and their relevance to the market, this review provides a comprehensive overview of the: properties, characteristics and potential health benefits of torularhodin. Moreover, the most promising developments in both upstream and downstream processing to obtain this colorant from microbial sources are considered. For this purpose, the main microorganisms used for torularhodin production are firstly reviewed, including biosynthesis pathway and torularhodin properties. Following, an overall analysis of the processing aspects related with its: extraction, separation and purification is provided. Lastly, current status and future trends of torularhodin-based processes and products such as therapeutic agents or biomaterials are discussed, indicating promising directions toward biorefinery and circular economy.


Subject(s)
Antioxidants , Carotenoids , Animals , Xanthophylls
9.
Molecules ; 27(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36296441

ABSTRACT

Photodynamic therapy (PDT) is a noninvasive therapeutic approach that has been applied in studies for the treatment of various diseases. In this context, PDT has been suggested as a new therapy or adjuvant therapy to traditional cancer therapy. The mode of action of PDT consists of the generation of singlet oxygen (¹O2) and reactive oxygen species (ROS) through the administration of a compound called photosensitizer (PS), a light source, and molecular oxygen (3O2). This combination generates controlled photochemical reactions (photodynamic mechanisms) that produce ROS, such as singlet oxygen (¹O2), which can induce apoptosis and/or cell death induced by necrosis, degeneration of the tumor vasculature, stimulation of the antitumor immune response, and induction of inflammatory reactions in the illuminated region. However, the traditional compounds used in PDT limit its application. In this context, compounds of biotechnological origin with photosensitizing activity in association with nanotechnology are being used in PDT, aiming at its application in several types of cancer but with less toxicity toward neighboring tissues and better absorption of light for more aggressive types of cancer. In this review, we present studies involving innovatively developed PS that aimed to improve the efficiency of PDT in cancer treatment. Specifically, we focused on the clinical translation and application of PS of natural origin on cancer.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/chemistry , Singlet Oxygen/chemistry , Reactive Oxygen Species/metabolism , Neoplasms/drug therapy , Oxygen
10.
Appl Microbiol Biotechnol ; 106(22): 7431-7447, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36255447

ABSTRACT

The development of an effective, realistic, and sustainable microbial biorefinery depends on several factors, including as one of the key aspects an adequate selection of microbial strain. The oleaginous red yeast Rhodotorula sp. has been studied as one powerful source for a plethora of high added-value biomolecules, such as carotenoids, lipids, and enzymes. Although known for over a century, the use of Rhodotorula sp. as resource for valuable products has not yet commercialized. Current interests for Rhodotorula sp. yeast have sparked from its high nutritional versatility and ability to convert agro-food residues into added-value biomolecules, two attractive characteristics for designing new biorefineries. In addition, as for other yeast-based bioprocesses, the overall process sustainability can be maximized by a proper integration with subsequent downstream processing stages, for example, by using eco-friendly solvents for the recovery of intracellular products from yeast biomass. This review intends to reflect on the current state of the art of microbial bioprocesses using Rhodotorula species. Therefore, we will provide an analysis of bioproduction performance with some insights regarding downstream separation steps for the extraction of high added-value biomolecules (specifically using efficient and sustainable platforms), providing information regarding the potential applications of biomolecules produced by Rhodotorula sp, as well as detailing the strengths and limitations of yeast-based biorefinery approaches. Novel genetic engineering technologies are further discussed, indicating some directions on their possible use for maximizing the potential of Rhodotorula sp. as cell factories. KEY POINTS: • Rhodotorula sp. are valuable source of high value-added compounds. • Potential of employing Rhodotorula sp. in a multiple product biorefinery. • Future perspectives in the biorefining of Rhodotorula sp. were discussed.


Subject(s)
Rhodotorula , Rhodotorula/genetics , Biomass , Carotenoids , Genetic Engineering , Biofuels
11.
Bioprocess Biosyst Eng ; 45(10): 1635-1644, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35974197

ABSTRACT

L-Asparaginase (L-ASNase) is an enzyme applied in the treatment of lymphoid malignancies. However, an innovative L-ASNase with high yield and lower side effects than the commercially available preparations are still a market requirement. Here, a new-engineered Bacillus subtilis strain was evaluated for Aliivibrio fischeri L-ASNase II production, being the bioprocess development and the enzyme characterization studied. The pBS0E plasmid replicative in Bacillus sp and containing PxylA promoter inducible by xylose and its repressive molecule sequence (XylR) was used for the genetic modification. Initially, cultivations were carried out in orbital shaker, and then the process was scaled up to stirred tank bioreactor (STB). After the bioprocess, the cells were recovered and submitted to ultrasound sonication for cells disruption and intracellular enzyme recovery. The enzymatic extract was characterized to assess its biochemical, kinetic and thermal properties using L-Asparagine and L-Glutamine as substrates. The results indicated the potential enzyme production in STB achieving L-ASNase activity up to 1.539 U mL-1. The enzymatic extract showed an optimum pH of 7.5, high L-Asparagine affinity (Km = 1.2275 mmol L-1) and low L-Glutaminase activity (0.568-0.738 U mL-1). In addition, thermal inactivation was analyzed by two different Kinect models to elucidate inactivation mechanisms, low kinetic thermal inactivation constants for 25 ºC and 37 ºC (0.128 and 0.148 h-1, respectively) indicate an elevated stability. The findings herein show that the produced recombinant L-ASNase has potential to be applied for pharmaceutical purposes.


Subject(s)
Antineoplastic Agents , Biological Products , Aliivibrio fischeri , Antineoplastic Agents/chemistry , Asparaginase/chemistry , Asparaginase/genetics , Asparaginase/therapeutic use , Asparagine , Bacillus subtilis/genetics , Glutaminase , Glutamine , Pharmaceutical Preparations , Xylose
12.
Bioresour Technol ; 362: 127785, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35970502

ABSTRACT

Carotenoids over-producing yeast has become a focus of interest of the biorefineries, in which the integration of the bioproduction with the following downstream processing units for the recovery and purification of carotenoids and other value-added byproducts is crucial to improve the sustainability and profitability of the overall bioprocess. Aiming the future implementation of Phaffia rhodozyma-based biorefineries, in this work, an integrative process for fractionation of intracellular compounds from P. rhodozyma biomass using non-hazardous bio-based solvents was developed. After one-extraction step, the total amount of astaxanthin, ß-carotene, lipids and proteins recovered was 63.11 µg/gDCW, 42.81 µg/gDCW, 53.75 mg/gDCW and 10.93 mg/g, respectively. The implementation of sequential back-extraction processes and integration with saponification and precipitation operations allowed the efficient fractionation and recovery (% w/w) of astaxanthin (∼72.5 %), ß-carotene âˆ¼90.17 %), proteins (21.04 %) and lipids (23.72 %). After fractionation, the manufacture of carotenoids-based products was demonstrated, through the mixture of carotenoids-rich extracts with bacterial cellulose to obtain biologically active bioplastics.


Subject(s)
Basidiomycota , Carotenoids , Basidiomycota/metabolism , Carotenoids/metabolism , Lipids , beta Carotene/metabolism
13.
BioTech (Basel) ; 11(2)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35822783

ABSTRACT

L-asparaginase (ASNase) is an aminohydrolase currently used in the pharmaceutical and food industries. Enzyme immobilization is an exciting option for both applications, allowing for a more straightforward recovery and increased stability. High surface area and customizable porosity make carbon xerogels (CXs) promising materials for ASNase immobilization. This work describes the influence of contact time, pH, and ASNase concentration on the immobilization yield (IY) and relative recovered activity (RRA) using the Central Composite Design methodology. The most promising results were obtained using CX with an average pore size of 4 nm (CX-4), reaching IY and RRA of 100%. At the optimal conditions (contact time 49 min, pH 6.73, and [ASNase] 0.26 mg·mL-1), the ASNase-CXs biocomposite was characterized and evaluated in terms of kinetic properties and operational, thermal, and pH stabilities. The immobilized ASNase onto CX-4 retained 71% of its original activity after six continuous reaction cycles, showed good thermal stability at 37 °C (RRA of 91% after 90 min), and was able to adapt to both acidic and alkaline environments. Finally, the results indicated a 3.9-fold increase in the immobilized ASNase affinity for the substrate, confirming the potential of CXs as a support for ASNase and as a cost-effective tool for subsequent use in the therapeutic and food sectors.

14.
BioTech (Basel) ; 11(2)2022 May 17.
Article in English | MEDLINE | ID: mdl-35822788

ABSTRACT

In general, agroindustrial byproducts can be easily assimilated by several microorganisms due to their composition, which is rich in carbohydrates. Therefore, they could be appropriate for use as raw materials in a sustainable refinery concept, including the production of hydrolytic enzymes with industrial applicability. In this work, xylanase production by the filamentous fungi Talaromyces amestolkiae in submerged culture was evaluated using five agroindustrial byproducts, namely, wheat bran, citrus pulp, rice bran, peanut skin, and peanut shell. Firstly, the aforementioned byproducts were characterized in terms of cellulose, xylan, lignin, and extractives. Next, production studies were performed, and wheat bran generated the highest enzymatic activity (5.4 U·mL-1), probably because of its large amount of xylan. Subsequently, a factorial design was performed to evaluate the independent variables yeast extract, wheat bran, K2HPO4, and pH, aiming to improve the variable response, xylanase activity. The condition that promoted the highest production, 13.02 U·mL-1 (141% higher than the initial condition), was 20 g·L-1 wheat bran, 2.5 g·L-1 yeast extract, 3 g·L-1 K2HPO4, and pH 7. Thus, industrial byproducts with a high content of xylan can be used as a culture medium to produce xylanase enzymes with a Talaromyces strain through an economical and sustainable approach.

15.
Molecules ; 27(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35164193

ABSTRACT

L-asparaginase (ASNase) is an amidohydrolase that can be used as a biopharmaceutical, as an agent for acrylamide reduction, and as an active molecule for L-asparagine detection. However, its free form displays some limitations, such as the enzyme's single use and low stability. Hence, immobilization is one of the most effective tools for enzyme recovery and reuse. Silica is a promising material due to its low-cost, biological compatibility, and tunable physicochemical characteristics if properly functionalized. Ionic liquids (ILs) are designer compounds that allow the tailoring of their physicochemical properties for a given task. If properly designed, bioconjugates combine the features of the selected ILs with those of the support used, enabling the simple recovery and reuse of the enzyme. In this work, silica-based supported ionic liquid-like phase (SSILLP) materials with quaternary ammoniums and chloride as the counterion were studied as novel supports for ASNase immobilization since it has been reported that ammonium ILs have beneficial effects on enzyme stability. SSILLP materials were characterized by elemental analysis and zeta potential. The immobilization process was studied and the pH effect, enzyme/support ratio, and contact time were optimized regarding the ASNase enzymatic activity. ASNase-SSILLP bioconjugates were characterized by ATR-FTIR. The bioconjugates displayed promising potential since [Si][N3444]Cl, [Si][N3666]Cl, and [Si][N3888]Cl recovered more than 92% of the initial ASNase activity under the optimized immobilization conditions (pH 8, 6 × 10-3 mg of ASNase per mg of SSILLP material, and 60 min). The ASNase-SSILLP bioconjugates showed more enhanced enzyme reuse than reported for other materials and immobilization methods, allowing five cycles of reaction while keeping more than 75% of the initial immobilized ASNase activity. According to molecular docking studies, the main interactions established between ASNase and SSILLP materials correspond to hydrophobic interactions. Overall, it is here demonstrated that SSILLP materials are efficient supports for ASNase, paving the way for their use in the pharmaceutical and food industries.


Subject(s)
Asparaginase/chemistry , Ionic Liquids/chemistry , Silicon Dioxide/chemistry , Hydrophobic and Hydrophilic Interactions , Molecular Docking Simulation , Spectroscopy, Fourier Transform Infrared
16.
Bioresour Technol ; 345: 126555, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34910971

ABSTRACT

There is a growing demand in the development of environmentally friendly technologies, based on the use of more biocompatible solvents for the recovery of natural bioactive compounds. In this work, the red yeast Phaffia rhodozyma biomass was used as a source of carotenoids to develop an integrative and efficient platform that promotes the recovery of astaxanthin and ß-carotene using bio-based solvents (BioSs). The extraction aptitude of pure BioSs was evaluated and compared with the conventional organic method. At this point, the influence of the BioSs molecular structures involved in the extraction procedures were also investigated. Overall, envisaging the industrial application of the process, an integrative platform was proposed for the recovery of astaxanthin/ß-carotene from P. rhodozyma biomass and the recycle of the BioSs. The life cycle assessment of the proposed technology using EtOH was evaluated, validating the sustainability of BioSs in the process with environmental impact reduction of 3-12%.


Subject(s)
Basidiomycota , beta Carotene , Biomass , Solvents , Xanthophylls
17.
Sci Rep ; 11(1): 21529, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34728685

ABSTRACT

L-asparaginase (ASNase, EC 3.5.1.1) is an enzyme that catalyzes the L-asparagine hydrolysis into L-aspartic acid and ammonia, being mainly applied in pharmaceutical and food industries. However, some disadvantages are associated with its free form, such as the ASNase short half-life, which may be overcome by enzyme immobilization. In this work, the immobilization of ASNase by adsorption over pristine and modified multi-walled carbon nanotubes (MWCNTs) was investigated, the latter corresponding to functionalized MWCNTs through a hydrothermal oxidation treatment. Different operating conditions, including pH, contact time and ASNase/MWCNT mass ratio, as well as the operational stability of the immobilized ASNase, were evaluated. For comparison purposes, data regarding the ASNase immobilization with pristine MWCNT was detailed. The characterization of the ASNase-MWCNT bioconjugate was addressed using different techniques, namely Transmission Electron Microscopy (TEM), Thermogravimetric Analysis (TGA) and Raman spectroscopy. Functionalized MWCNTs showed promising results, with an immobilization yield and a relative recovered activity of commercial ASNase above 95% under the optimized adsorption conditions (pH 8, 60 min of contact and 1.5 × 10-3 g mL-1 of ASNase). The ASNase-MWCNT bioconjugate also showed improved enzyme operational stability (6 consecutive reaction cycles without activity loss), paving the way for its use in industrial processes.


Subject(s)
Asparaginase/metabolism , Asparagine/metabolism , Enzymes, Immobilized/metabolism , Nanotubes, Carbon/chemistry , Asparaginase/chemistry , Catalysis , Enzyme Stability , Enzymes, Immobilized/chemistry , Humans , Hydrogen-Ion Concentration , Kinetics , Temperature
18.
Appl Microbiol Biotechnol ; 105(11): 4515-4534, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34059941

ABSTRACT

In the past decades, the production of biopharmaceuticals has gained high interest due to its great sensitivity, specificity, and lower risk of negative effects to patients. Biopharmaceuticals are mostly therapeutic recombinant proteins produced through biotechnological processes. In this context, L-asparaginase (L-asparagine amidohydrolase, L-ASNase (E.C. 3.5.1.1)) is a therapeutic enzyme that has been abundantly studied by researchers due to its antineoplastic properties. As a biopharmaceutical, L-ASNase has been used in the treatment of acute lymphoblastic leukemia (ALL), acute myeloblastic leukemia (AML), and other lymphoid malignancies, in combination with other drugs. Besides its application as a biopharmaceutical, this enzyme is widely used in food processing industries as an acrylamide mitigation agent and as a biosensor for the detection of L-asparagine in physiological fluids at nano-levels. The great demand for L-ASNase is supplied by recombinant enzymes from Escherichia coli and Erwinia chrysanthemi. However, production processes are associated to low yields and proteins associated to immunogenicity problems, which leads to the search for a better enzyme source. Considering the L-ASNase pharmacological and food importance, this review provides an overview of the current biotechnological developments in L-ASNase production and biochemical characterization aiming to improve the knowledge about its production. KEY POINTS: • Microbial enzyme applications as biopharmaceutical and in food industry • Biosynthesis process: from the microorganism to bioreactor technology • Enzyme activity and kinetic properties: crucial for the final application.


Subject(s)
Antineoplastic Agents/metabolism , Asparaginase/biosynthesis , Asparagine , Biotechnology , Dickeya chrysanthemi , Escherichia coli , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Recombinant Proteins/biosynthesis
19.
Molecules ; 25(24)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33321857

ABSTRACT

l-asparaginase (ASNase, EC 3.5.1.1) is an aminohydrolase enzyme with important uses in the therapeutic/pharmaceutical and food industries. Its main applications are as an anticancer drug, mostly for acute lymphoblastic leukaemia (ALL) treatment, and in acrylamide reduction when starch-rich foods are cooked at temperatures above 100 °C. Its use as a biosensor for asparagine in both industries has also been reported. However, there are certain challenges associated with ASNase applications. Depending on the ASNase source, the major challenges of its pharmaceutical application are the hypersensitivity reactions that it causes in ALL patients and its short half-life and fast plasma clearance in the blood system by native proteases. In addition, ASNase is generally unstable and it is a thermolabile enzyme, which also hinders its application in the food sector. These drawbacks have been overcome by the ASNase confinement in different (nano)materials through distinct techniques, such as physical adsorption, covalent attachment and entrapment. Overall, this review describes the most recent strategies reported for ASNase confinement in numerous (nano)materials, highlighting its improved properties, especially specificity, half-life enhancement and thermal and operational stability improvement, allowing its reuse, increased proteolysis resistance and immunogenicity elimination. The most recent applications of confined ASNase in nanomaterials are reviewed for the first time, simultaneously providing prospects in the described fields of application.


Subject(s)
Asparaginase/chemistry , Asparaginase/pharmacology , Biotechnology , Asparaginase/isolation & purification , Biosensing Techniques , Drug Development , Food Industry , Humans , Nanotechnology/methods , Protein Engineering , Structure-Activity Relationship
20.
Biotechnol Prog ; 35(5): e2838, 2019 09.
Article in English | MEDLINE | ID: mdl-31087815

ABSTRACT

Lipases are well-known biocatalysts used in several industrial processes/applications. Thus, as with other enzymes, changes in their surrounding environment and/or their thermodynamic parameters can induce structural changes that can increase, decrease, or even inhibit their catalytic activity. The use of ionic compounds as solvents or additives is a common approach for adjusting reaction conditions and, consequently, for controlling the biocatalytic activity of enzymes. Herein, to elucidate the effects of ionic compounds on the structure of lipase, the stability and enzymatic activity of lipase from Aspergillus niger in aqueous solutions (at 0.05, 0.10, 0.50, and 1.00 M) of six cholinium-based ionic liquids (cholinium chloride [Ch]Cl; cholinium acetate ([Ch][Ac]); cholinium propanoate ([Ch][Prop]); cholinium butanoate ([Ch][But]); cholinium pentanoate ([Ch][Pent]); and cholinium hexanoate ([Ch][Hex])) were evaluated over 24 hr. The enzymatic activity of lipase was maintained or enhanced in the lower concentrations of all the [Ch]+ -ILs (below 0.1 M). [Ch][Ac] maintained the biocatalytic behavior of lipase, independent of the IL concentration and incubation time. However, above 0.1 M, [Ch][Pent] and [Ch][Hex] caused complete inhibition of the catalytic activity of the enzyme, demonstrating that the increase in the anionic alkyl chain length strongly affected the conformation of the lipase. The hydrophobicity and concentration of the [Ch]+ -ILs play an important role in the enzyme activity, and these parameters can be controlled by adjusting the anionic alkyl chain length. The inhibitory effects of [Ch][Pent] and [Ch][Hex] may be of great interest to the pharmaceutical industry to induce pharmacological inhibition of gastric and pancreatic lipases.


Subject(s)
Aspergillus niger/enzymology , Choline/chemistry , Fungal Proteins , Ionic Liquids/chemistry , Lipase , Enzyme Stability , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Lipase/chemistry , Lipase/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...