Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 12(3)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36978489

ABSTRACT

Vernonia polyanthes is a medicinal plant used to treat many disorders, including infectious diseases. This study investigated the chemical constituents and the antibacterial activity of V. polyanthes leaf rinse extract (Vp-LRE). The chemical characterization of Vp-LRE was established using ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS), and glaucolide A was identified through 1H and 13C nuclear magnetic resonance (NMR) and mass fragmentation. The cytotoxicity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). The antibacterial activity was assessed by minimal inhibitory concentration and minimal bactericidal concentration. Interactions between ligands and beta-lactamase were evaluated via molecular docking. UHPLC/Q-TOF-MS detected acacetin, apigenin, chrysoeriol, isorhamnetin, isorhamnetin isomer, kaempferide, 3',4'-dimethoxyluteolin, 3,7-dimethoxy-5,3',4'-trihydroxyflavone, piptocarphin A and glaucolide A. Vp-LRE (30 µg/mL) and glaucolide A (10 and 20 µg/mL) were cytotoxic against RAW 264.7 cells. Glaucolide A was not active, but Vp-LRE inhibited the Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Escherichia coli, Salmonella Choleraesuis and Typhimurium, with a bacteriostatic effect. The compounds (glaucolide A, 3',4'-dimethoxyluteolin, acacetin and apigenin) were able to interact with beta-lactamase, mainly through hydrogen bonding, with free energy between -6.2 to -7.5 kcal/mol. These results indicate that V. polyanthes is a potential natural source of phytochemicals with a significant antibiotic effect against MRSA strains.

2.
Microb Pathog ; 123: 385-392, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30053603

ABSTRACT

Vernonia condensata Baker is traditionally used to treat several inflammatory and infectious processes. So, this study evaluated the antibiotic, synergistic and antibiofilm effects, and the mode of action of ethyl acetate fraction from V. condensata leaves (Vc-EAF) against Staphylococcus aureus. Five S. aureus ATCC® and five methicillin-resistant S. aureus (MRSA) routine strains were used to determine Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration. The combinatory effect was evaluated by checkerboard and time kill methods; the mode of action through the bacterial cell viability and leakage of compounds absorbing at 280 nm; and the antibiofilm action by quantifying the percentage of adhesion inhibition. Vc-EAF was active against S. aureus (ATCC® 6538™), (ATCC® 25923™), (ATCC® 29213™), (ATCC® 33591™), (ATCC® 33592™), MRSA 1485279, 1605677, 1664534, 1688441 and 1830466, with MIC of 625 µg/mL for ATCC®, and 1250, 1250, >2500, 2500 and 2500 µg/mL for MRSA, in this order, with bacteriostatic effect for both ATCC® and MRSA strains. Vc-EAF plus ampicillin revealed a total synergic effect on MRSA 1485279, and Vc-EAF combined with chloramphenicol, a partial synergic action against S. aureus (ATCC® 29213™) and (ATCC® 25923™). The time kill data agreed with checkerboard results, and the treated cells number was reduced with release of bacterial content. An expressive bacterial adhesion inhibition for S. aureus (ATCC® 25923™) and MRSA 1485279 was detected. These results showed that V. condensata is a promising natural source of active substances against S. aureus, including multiresistant strains, interfering with their antibacterial growth and hampering their adhesion to surfaces.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Plant Extracts/pharmacology , Staphylococcus aureus/drug effects , Vernonia/chemistry , Ampicillin/pharmacology , Bacterial Adhesion/drug effects , Cell Membrane/drug effects , Chloramphenicol/pharmacology , Drug Combinations , Drug Synergism , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Microbial Viability/drug effects , Plant Leaves/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...