Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
ACS Nano ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38330915

ABSTRACT

Van der Waals (vdW) magnets are promising, because of their tunable magnetic properties with doping or alloy composition, where the strength of magnetic interactions, their symmetry, and magnetic anisotropy can be tuned according to the desired application. However, so far, most of the vdW magnet-based spintronic devices have been limited to cryogenic temperatures with magnetic anisotropies favoring out-of-plane or canted orientation of the magnetization. Here, we report beyond room-temperature lateral spin-valve devices with strong in-plane magnetization and spin polarization of the vdW ferromagnet (Co0.15Fe0.85)5GeTe2 (CFGT) in heterostructures with graphene. Density functional theory (DFT) calculations show that the magnitude of the anisotropy depends on the Co concentration and is caused by the substitution of Co in the outermost Fe layer. Magnetization measurements reveal the above room-temperature ferromagnetism in CFGT and clear remanence at room temperature. Heterostructures consisting of CFGT nanolayers and graphene were used to experimentally realize basic building blocks for spin valve devices, such as efficient spin injection and detection. Further analysis of spin transport and Hanle spin precession measurements reveals a strong in-plane magnetization with negative spin polarization at the interface with graphene, which is supported by the calculated spin-polarized density of states of CFGT. The in-plane magnetization of CFGT at room temperature proves its usefulness in graphene lateral spin-valve devices, thus revealing its potential application in spintronic technologies.

2.
Nanoscale ; 16(3): 1352-1361, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38131380

ABSTRACT

The potential of two-dimensional MXenes as electrodes in supercapacitor applications has been studied extensively. However, the role of chemical and magnetic disorder in their electrochemical parameters, e.g., capacitance, has not been explored yet. In this work, we have systematically addressed this for V2-xMnxCO2 MXene solid solutions with an analysis based upon the results from first-principles electronic structure calculations. We find that the variations in the total capacitance over a voltage window depend on the degree of chemical and magnetic disorder. In the course of our investigation, it was also found that the magnetic structure on the surface can substantially influence the redox charge transfer, an as yet unexplored phenomenon. A significantly large charge transfer and thus a large capacitance can be obtained by manipulating the chemical composition and the magnetic order of the surfaces. These findings can be useful in designing operational supercapacitor electrodes with magnetic constituents.

3.
Phys Chem Chem Phys ; 26(3): 1936-1949, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38116600

ABSTRACT

Graphene Nano Ribbons (GNRs) have been studied extensively due to their potential applications in electrical transport, optical devices, etc. The Tight Binding (TB) model is a common method used to theoretically study the properties of GNRs. However, the hopping parameters of two-dimensional graphene (2DG) are often used as the hopping parameters of the TB model of GNRs, which may lead to inaccuracies in the prediction of GNRs. In this work, we calculated the site-dependent hopping parameters from density functional theory and construction of Wannier orbitals for use in a realistic TB model. It has been found that due to the edge effect, the hopping parameters of edge C atoms are markedly different from the bulk part, which is prominently observed in narrow GNRs. Compared to graphene, the change of hopping parameter of edge C atoms of zigzag GNRs (ZGNRs) and armchair GNRs (AGNRs) is as high as 0.11 and 0.08 eV, respectively. Moreover, we investigated the impact of the calculated site-dependent (SD) hopping parameters on the electronic transport properties of GNRs in the absence and presence of the perpendicular electric field and dilute charged impurities using the Green function approach, Landauer-Büttiker formalism and self-consistent Born approximation. We find an electron-hole asymmetry in the electronic structure and transport properties of ZGNRs with SD hopping parameters. Furthermore, AGNRs with SD hopping energies show a band gap regardless of their width, while AGNRs with 2DG hopping parameters exhibit metallic or semiconductor phases depending on their width. In addition, electric field-induced 4-ZGNR with SD hopping parameters undergoes a metallic to n-doped semiconducting phase transition whereas for 4-ZGNR with 2DG hopping parameters and 8-AGNRs with 2DG or SD hopping parameters, the application of an electric field opens the band gap in both conduction and valence bands simultaneously. Our findings provide evidence for the electron-hole symmetry breaking in ZGNR with SD hopping parameters and make ZGNRs a suitable candidate in valleytronic devices.

4.
ACS Nano ; 17(21): 21006-21017, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37862596

ABSTRACT

Thermoelectric materials play a vital role in the pursuit of a sustainable energy system by allowing the conversion of waste heat to electric energy. Low thermal conductivity is essential to achieving high-efficiency conversion. The conductivity depends on an interplay between the phononic and electronic properties of the nonequilibrium state. Therefore, obtaining a comprehensive understanding of nonequilibrium dynamics of the electronic and phononic subsystems as well as their interactions is key for unlocking the microscopic mechanisms that ultimately govern thermal conductivity. A benchmark material that exhibits ultralow thermal conductivity is SnSe. We study the nonequilibrium phonon dynamics induced by an excited electron population using a framework combining ultrafast electron diffuse scattering and nonequilibrium kinetic theory. This in-depth approach provides a fundamental understanding of energy transfer in the spatiotemporal domain. Our analysis explains the dynamics leading to the observed low thermal conductivity, which we attribute to a mode-dependent tendency to nonconservative phonon scattering. The results offer a penetrating perspective on energy transport in condensed matter with far-reaching implications for rational design of advanced materials with tailored thermal properties.

5.
Chem Commun (Camb) ; 59(15): 2106-2109, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36723213

ABSTRACT

A manganese(II) metal-organic framework based on the hexatopic hexakis(4-carboxyphenyl)benzene, cpb6-: [Mn3(cpb)(dmf)3], was solvothermally prepared showing a Langmuir area of 438 m2 g-1, rapid uptake OF sulfur hexafluoride (SF6) as well as electrochemical and magnetic properties, while single crystal diffraction reveals an unusual rod-MOF topology.

6.
Adv Mater ; 35(16): e2209113, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36641649

ABSTRACT

The discovery of van der Waals (vdW) magnets opened a new paradigm for condensed matter physics and spintronic technologies. However, the operations of active spintronic devices with vdW ferromagnets are limited to cryogenic temperatures, inhibiting their broader practical applications. Here, the robust room-temperature operation of lateral spin-valve devices using the vdW itinerant ferromagnet Fe5 GeTe2 in heterostructures with graphene is demonstrated. The room-temperature spintronic properties of Fe5 GeTe2 are measured at the interface with graphene with a negative spin polarization. Lateral spin-valve and spin-precession measurements provide unique insights by probing the Fe5 GeTe2 /graphene interface spintronic properties via spin-dynamics measurements, revealing multidirectional spin polarization. Density functional theory calculations in conjunction with Monte Carlo simulations reveal significantly canted Fe magnetic moments in Fe5 GeTe2 along with the presence of negative spin polarization at the Fe5 GeTe2 /graphene interface. These findings open opportunities for vdW interface design and applications of vdW-magnet-based spintronic devices at ambient temperatures.

7.
Phys Chem Chem Phys ; 24(35): 21261-21269, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36040434

ABSTRACT

In layered materials with the stacking axis perpendicular to the basal plane, anharmonicity strongly affects phonon propagation due to weak interlayer coupling, which is helpful to reduce the lattice thermal conductivity and improve the thermoelectric (TE) performance significantly. By combining first-principles calculations and the Boltzmann transport equation, we systematically analyzed and evaluated the lattice thermal conductivity and TE properties of LaMOCh (M = Cu, Ag; Ch = S, Se). The results indicate that these layered materials exhibit ultralow lattice thermal conductivities of 0.24-0.37 W m-1 K-1 along the interlayer direction at room temperature. The low lattice thermal conductivities have been analyzed from some inherent phonon properties, such as low acoustic phonon group velocity, large Grüneisen parameters, and a short phonon relaxation time. Originating from their natural layered crystal structure, the thermal and electronic transports (i.e., thermal conductivity, Seebeck coefficient, and electrical conductivity) are both highly anisotropic between their intralayer and interlayer directions. Finally, we obtained ZT values of 1.17 and 1.26 at 900 K along the interlayer direction for n-type LaCuOSe and LaAgOSe, respectively. Generally, LaMOSe exhibit larger anisotropy than LaMOS, in both n- and p-types of doping. Our findings of low thermal conductivities and large anisotropic TE performances of these layered systems should stimulate much attention in BiCuOSe and alike layered TE families.

8.
J Phys Chem Lett ; 13(22): 4877-4883, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35617439

ABSTRACT

Recent experiments on Fe5GeTe2 suggested the presence of a symmetry breaking of its conventional crystal structure. Here, using density functional theory calculations, we elucidate that the stabilization of the (√3 × âˆš3)R30° supercell structure is caused by the swapping of Fe atoms occurring in the monolayer limit. The swapping to the vicinity of Te atoms is facilitated by the spontaneous occurrence of Fe vacancy and its low diffusion barrier. Our calculated magnetic exchange parameters show the simultaneous presence of ferromagnetic and antiferromagnetic exchange among a particular type of Fe atom. The Fe sublattice projected magnetization obtained from Monte Carlo simulations clearly demonstrates an exotic temperature-dependent behavior of this Fe type along with a large canting angle at T = 0 K, indicating the presence of a complex noncollinear magnetic order. We propose that the low-temperature crystal structure results from the swapping between two sublattices of Fe, giving rise to peculiar magnetization obtained in experiments.

9.
ACS Appl Mater Interfaces ; 12(47): 52915-52921, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33175485

ABSTRACT

Heterointerfaces coupling complex oxides exhibit coexisting functional properties such as magnetism, superconductivity, and ferroelectricity, often absent in their individual constituent. SrTiO3 (STO), a canonical band insulator, is an active constituent of such heterointerfaces. Temperature-, strain-, or mechanical stress-induced ferroelastic transition leads to the formation of narrow domains and domain walls in STO. Such ferroelastic domain walls have been studied using imaging or transport techniques and, often, the findings are influenced by the choice and interaction of the electrodes with STO. In this work, we use graphene as a unique platform to unveil the movement of oxygen vacancies and ferroelastic domain walls near the STO surface by studying the temperature and gate bias dependence of charge transport in graphene. By sweeping the back gate voltage, we observe antihysteresis in graphene typically observed in conventional ferroelectric oxides. Interestingly, we find features in antihysteresis that are related to the movement of domain walls and of oxygen vacancies in STO. We ascertain this by analyzing the time dependence of the graphene square resistance at different temperatures and gate bias. Density functional calculations estimate the surface polarization and formation energies of layer-dependent oxygen vacancies in STO. This corroborates quantitatively with the activation energies determined from the temperature dependence of the graphene square resistance. Introduction of a hexagonal boron nitride (hBN) layer, of varying thicknesses, between graphene and STO leads to a gradual disappearance of the observed features, implying the influence of the domain walls onto the potential landscape in graphene.

10.
Nano Lett ; 20(9): 6372-6380, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32786947

ABSTRACT

A damping-like spin-orbit torque (SOT) is a prerequisite for ultralow-power spin logic devices. Here, we report on the damping-like SOT in just one monolayer of the conducting transition-metal dichalcogenide (TMD) TaS2 interfaced with a NiFe (Py) ferromagnetic layer. The charge-spin conversion efficiency is found to be 0.25 ± 0.03 in TaS2(0.88)/Py(7), and the spin Hall conductivity (14.9×105ℏ2eΩ-1m-1) is found to be superior to values reported for other TMDs. We also observed sizable field-like torque in this heterostructure. The origin of this large damping-like SOT can be found in the interfacial properties of the TaS2/Py heterostructure, and the experimental findings are complemented by the results from density functional theory calculations. It is envisioned that the interplay between interfacial spin-orbit coupling and crystal symmetry yielding large damping-like SOT. The dominance of damping-like torque demonstrated in our study provides a promising path for designing the next-generation conducting TMD-based low-powered quantum memory devices.

11.
J Phys Chem Lett ; 11(8): 2925-2933, 2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32223172

ABSTRACT

Using evolutionary structure search combined with ab initio theory, we investigate the electronic, thermal, and mechanical properties of two-dimensional (2D) A2B (A = Cu, Ag, Au, and B = S, Se) auxetic semiconductors. Two types of structures are found to have low energy, namely, s(I/II)-A2B, which have direct bandgaps in the range 1.09-2.60 eV and high electron mobilities. Among these semiconductors, Cu2B and Ag2B have light holes with 2 orders of magnitude larger mobility than the heavy holes, up to 9.51 × 104 cm2 V-1 s-1, giving the possibility of achieving highly anisotropic hole transport with the application of a uniaxial strain. Due to the ionic bonding nature, s-A2B structures have unusually low lattice thermal conductivities down to 1.5 W m-1 K-1 at 300 K, which are quite promising for new generation thermoelectric devices. Besides, s-A2B structures show extraordinary flexibility with ultralow Young's moduli (down to 20 N/m), which are lower than most previously reported 2D materials. Moreover, under strain along the diagonal direction, five of the structures have in-plane negative Poisson's ratios.

12.
J Phys Condens Matter ; 32(31): 315503, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32224510

ABSTRACT

The study of zinc oxide, within the homogeneous electron gas approximation, results in overhybridization of zinc 3d shell with oxygen 2p shell, a problem shown for most transition metal chalcogenides. This problem can be partially overcome by using LDA + U (or, GGA + U) methodology. However, in contrast to the zinc 3d orbital, Hubbard type correction is typically excluded for the oxygen 2p orbital. In this work, we provide results of electronic structure calculations of an oxygen vacancy in ZnO supercell from ab initio perspective, with two Hubbard type corrections, U Zn-3d and U O-2p. The results of our numerical simulations clearly reveal that the account of U O-2p has a significant impact on the properties of bulk ZnO, in particular the relaxed lattice constants, effective mass of charge carriers as well as the bandgap. For a set of validated values of U Zn-3d and U O-2p we demonstrate the appearance of a localized state associated with the oxygen vacancy positioned in the bandgap of the ZnO supercell. Our numerical findings suggest that the defect state is characterized by the highest overlap with the conduction band states as obtained in the calculations with no Hubbard-type correction included. We argue that the electronic density of the defect state is primarily determined by Zn atoms closest to the vacancy.

13.
Phys Chem Chem Phys ; 22(15): 8212-8218, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32249888

ABSTRACT

The long spin-diffusion length, spin-lifetime and excellent optical absorption coefficient of graphene provide an excellent platform for building opto-electronic devices and spin-based logic in a nanometer regime. In this study, by using density functional theory and its time-dependent version, we provide a detailed analysis of how the size and shape of graphene nanoflakes can be used to alter their magnetic structures and optical properties. As the edges of zigzag graphene nanoribbons are known to align anti-ferromagnetically and armchair nanoribbons are typically non-magnetic, a combination of both in a nanoflake geometry can be used to optimize the ground-state magnetic structure and tailor the exchange coupling decisive for ferro- or anti-ferromagnetic edge magnetism, thereby offering the possibility to optimize the external fields needed to switch magnetic ordering. Most importantly, we show that the magnetic state alters the optical response of the flake leading to the possibility of opto-spintronic applications.

14.
J Phys Condens Matter ; 32(12): 125702, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-31770733

ABSTRACT

Recent advancements in CdTe photovoltaic efficiency have come from selenium grading, which reduces the band gap and significantly improves carrier lifetimes. In this work, density functional theory calculations were performed to understand the structural and electronic effects of Se alloying. Special quasirandom structures were used to simulate a random distribution of Se anions. Lattice parameters decrease linearly as Se concentration increases in line with Vegard's Law. The simulated band gap bowing shows strong agreement with experimental values. Selenium, by itself, does not introduce any defect states in the band gap and no significant changes to band structure around the [Formula: see text] point are found. Band offset values suggest a reduction of recombination across the CdSeTe/MgZnO interface at [Formula: see text], which corresponds with the Se concentration used experimentally. Band structure analysis of two cases [Formula: see text] and x = 0.4375, shows a change from dominant Cd/Te contributions in the conduction band minimum to Cd/Se contributions as Se concentration is increased, hinting at a change in optical transition characteristics. Further calculations of optical absorption spectra suggest a reduced transition probability particularly at higher energies, which confirms experimental predictions that Se passivates the non-radiative recombination centres.

15.
J Phys Condens Matter ; 31(47): 475501, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31349237

ABSTRACT

In this paper, a new half-metallic (HM) double perovskite compound is predicted with the simultaneous presence of ferromagnetism and polar distortion. The structural, electronic and magnetic properties of Sr2MnVO6 (SMVO) are calculated by density functional theory (DFT) with both generalized gradient approximation (GGA) and GGA + U approaches, where U is the on-site Coulomb interaction parameter. Different orderings of B (B') cationic sites in A2BB'O6 double perovskite structure are evaluated, including rocksalt, columnar and layered arrangements for cubic, monoclinic and tetragonal crystal structures. It is found that the most stable ordering is obtained when B and B' are placed in a layered type ordering for a tetragonal crystal structure with I4/m space group, which is confirmed by phonon calculations. The B-site ordering of the Mn3+ and V5+ ions in a layered configuration leads to ferromagnetically coupled magnetic moments of 4.17 µ B at Mn site and 0.23 µ B at V site. Finally, SMVO is found to be a half-metallic ferromagnetic (HM-FM) compound with a band gap of 0.65 eV in a spin down channel with off-centered displacement of V atoms in the octahedral cage (second order Jahn -Teller effect) which can cause ferroelectricity. Therefore, SMVO is predicted to be a polar HM material and a promising candidate for multiferroic property with potential application in spintronics.

16.
J Phys Chem A ; 123(14): 3214-3222, 2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30892039

ABSTRACT

It is established that density functional theory (DFT) + U is a better choice compared to DFT for describing the correlated electron metal center in organometallics. The value of the Hubbard U parameter may be determined from linear response, either by considering the response of the metal site alone or by additionally considering the response of other sites in the compound. We analyze here in detail the influence of ligand shells of increasing size on the U parameter calculated from the linear response for five transition metal phthalocyanines. We show that the calculated multiple-site U is larger than the single-site U by as much as 1 eV and the ligand atoms that are mainly responsible for this difference are the isoindole nitrogen atoms directly bonded to the central metal atom. This suggests that a different U value may be required for computations of chemisorbed molecules compared to physisorbed and gas-phase cases.

17.
RSC Adv ; 8(12): 6527-6531, 2018 Feb 06.
Article in English | MEDLINE | ID: mdl-35540402

ABSTRACT

The interfaces in 2D hybrids of graphene and h-BN provide interesting possibilities of adsorbing and manipulating atomic and molecular entities. In this paper, with the aid of density functional theory, we demonstrate the adsorption characteristics of DNA nucleobases at different interfaces of 2D hybrid nanoflakes of graphene and h-BN. The interfaces provide stronger binding to the nucleobases in comparison to pure graphene and h-BN nanoflakes. It is also revealed that the individual dipole moments of the nucleobases and nanoflakes dictate the orientation of the nucleobases at the interfaces of the hybrid structures. The results of our study point towards a possible route to selectively control the orientation of individual molecules in biosensors.

18.
Sci Rep ; 7(1): 15177, 2017 11 10.
Article in English | MEDLINE | ID: mdl-29127327

ABSTRACT

A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.

19.
J Phys Condens Matter ; 29(46): 465802, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29057756

ABSTRACT

We present a systematic study of the magnetic coupling between iron and gadolinium layers intermediated by 4d and 5d transition metals using density functional theory. We demonstrate that it is possible to find a magnetic coupling for most of them. In particular, for the early transition metals (d 1, d 2, d 3 and d 4), a ferromagnetic coupling occurs even stronger than the 3d interlayers. Atomic size and the electronic configuration of the transition metals are crucial for the nature of the coupling. All the open shell transition metals present induced magnetic moments. By increasing the number of interlayers, an oscillating behavior in the magnetic coupling was found and the magnetic coupling goes to zero beyond four spacer layers. Using Monte Carlo simulations, we demonstrate that the interlayer strongly enhances the critical temperature in the Gd layers closest to the interface.

20.
Sci Rep ; 7(1): 10734, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28878313

ABSTRACT

Besides epitaxial mismatch that can be accommodated by lattice distortions and/or octahedral rotations, ferroelectric-ferromagnetic interfaces are affected by symmetry mismatch and subsequent magnetic ordering. Here, we have investigated La0.67 Sr0.33 MnO3 (LSMO) samples with varying underlying unit cells (uc) of BaTiO3 (BTO) layer on (001) and (110) oriented substrates in order to elucidate the role of symmetry mismatch. Lattice mismatch for 3 uc of BTO and symmetry mismatch for 10 uc of BTO, both associated with local MnO6 octahedral distortions of the (001) LSMO within the first few uc, are revealed by scanning transmission electron microscopy. Interestingly, we find exchange bias along the in-plane [110]/[100] directions only for the (001) oriented samples. Polarized neutron reflectivity measurements confirm the existence of a layer with zero net moment only within (001) oriented samples. First principle density functional calculations show that even though the bulk ground state of LSMO is ferromagnetic, a large lattice constant together with an excess of La can stabilize an antiferromagnetic LaMnO3-type phase at the interface region and explain the experimentally observed exchange bias. Atomic scale tuning of MnO6 octahedra can thus be made possible via symmetry mismatch at heteroepitaxial interfaces. This aspect can act as a vital parameter for structure-driven control of physical properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...