Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Eur Urol Open Sci ; 62: 19-25, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38585207

ABSTRACT

Background and objective: Hydronephrosis is essential in the diagnosis of renal colic. We automated the detection of hydronephrosis from ultrasound images to standardize the therapy and reduce the misdiagnosis of renal colic. Methods: Anonymously collected ultrasound images of human kidneys, both normal and hydronephrotic, were preprocessed for neural networks. Six "state of the art" models were trained and cross-validated for the detection of hydronephrosis, and two convolutional networks were used for kidney segmentation. In the testing phase, performance metrics included true positives, true negatives, false positives, false negatives, accuracy, and F1 score, while the evaluation of the segmentation task involved accuracy, precision, dice, jaccard, recall, and ASSD. Key findings and limitations: A total of 523 sonographic kidney images (423 nonhydronephrotic and 100 hydronephrotic) were collected from three different ultrasound devices. After training on this dataset, all models were used to evaluate 200 new ultrasound kidney images (142 nonhydronephrotic and 58 hydronephrotic kidneys). The highest validation accuracy (98.5%) was achieved by the AlexNet model (GoogLeNet 97%, AlexNet_v2 96%, ResNet50 96%, ResNet101 97.5%, and ResNet152 95%). The deeplabv3_resnet50 and deeplabv3_resnet101 reached a dice coefficient of 94.74% and 94.48%, respectively, on the task of automated kidney segmentation. The study is limited by analyzing only hydronephrosis, but this specific focus enabled high detection accuracy. Conclusions and clinical implications: We show that our automated ultrasound deep learning model can be trained and used to interpret and segmentate ultrasound images from different sources with high accuracy. This method will serve as an automated tool in the diagnostic algorithm of acute renal failure in the future. Patient summary: Hydronephrosis is crucial in the diagnosis of renal colic. Recent advances in artificial intelligence allow automated detection of hydronephrosis in ultrasound images with high accuracy. These methods will help standardize the diagnosis and treatment renal colic.

2.
IEEE/ACM Trans Comput Biol Bioinform ; 19(4): 2124-2136, 2022.
Article in English | MEDLINE | ID: mdl-33819160

ABSTRACT

Breast cancer is one of the main causes behind cancer deaths in women worldwide. Yet, owing to the complexity of the histopathological images and the arduousness of manual analysis task, the entire diagnosis process becomes time-consuming and the results are often contingent on the pathologist's subjectivity. Thus developing an automated, precise histopathological image classification system is crucial. This paper presents a novel hybrid ensemble framework consisting of multiple fine-tuned convolutional neural network (CNN) architectures as supervised feature extractors and eXtreme gradient boosting trees (XGBoost) as a top-level classifier, for patch wise classification of high-resolution breast histopathology images. Due to the semantic complexity of the patch images, a single CNN architecture may not always extract high quality features, and the traditional Softmax classifier might not provide ideal results for classifying the CNN extracted features. Thus we aim to improve patch wise classification by proposing a hybrid ensemble model that incorporates different discriminating feature representations of the patches, coupled with XGBoost for robust classification. Experimental results show that our proposed method outperforms state-of-the-art methods to the best of our knowledge.


Subject(s)
Breast Neoplasms , Carcinoma , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Female , Humans , Image Processing, Computer-Assisted/methods , Microscopy , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL