Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 245: 125492, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37343610

ABSTRACT

Calcium (Ca2+) signaling plays a major role in regulating multiple processes in living cells. The photoreceptor potential in Chlamydomonas triggers the generation of all or no flagellar Ca2+ currents that cause membrane depolarization across the eyespot and flagella. Modulation in membrane potential causes changes in the flagellar waveform, and hence, alters the beating patterns of Chlamydomonas flagella. The rhodopsin-mediated eyespot membrane potential is generated by the photoreceptor Ca2+ current or P-current however, the flagellar Ca2+ currents are mediated by unidentified voltage-gated calcium (VGCC or CaV) and potassium channels (VGKC). The voltage-gated ion channel that associates with ChRs to generate Ca2+ influx across the flagella and its cellular distribution has not yet been identified. Here, we identified putative VGCCs from algae and predicted their novel properties through insilico analysis. We further present experimental evidence on Chlamydomonas reinhardtii VGCCs to predict their novel physiological roles. Our experimental evidences showed that CrVGCC4 localizes to the eyespot and flagella of Chlamydomonas and associates with channelrhodopsins (ChRs). Further in silico interactome analysis of CrVGCCs suggested that they putatively interact with photoreceptor proteins, calcium signaling, and intraflagellar transport components. Expression analysis indicated that these VGCCs and their putative interactors can be perturbed by light stimuli. Collectively, our data suggest that VGCCs in general, and VGCC4 in particular, might be involved in the regulation of the photobehavioral response of Chlamydomonas.


Subject(s)
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas/metabolism , Calcium/metabolism , Calcium Channels/metabolism , Chlamydomonas reinhardtii/metabolism , Calcium Signaling
2.
bioRxiv ; 2023 May 05.
Article in English | MEDLINE | ID: mdl-37162876

ABSTRACT

Small GTPases comprise key proteins in signal transduction that function by conformational switching ability between GDP- and GTP-bound states. The ADP-ribosylation factor (ARF) family is involved in vesicle trafficking and cellular functions. Though evolutionarily well conserved, little is known about ARF and ARF-like GTPases in plants. Here, we characterized functional properties and cellular localization of the essential small ARF-like GTPase TITAN5/HALLIMASCH/ARL2/ARLC1 (hereafter termed TTN5) from Arabidopsis thaliana. TTN5 showed rapid guanine nucleotide exchange capacity comparable to that of human counterparts, but a remarkably low GTP hydrolysis reaction. A TTN5Q70L mutant had enhanced nucleotide exchange activity, indicative of intracellular activation, while TTN5T30N with fast nucleotide dissociation can be considered a dominant-negative form. This suggests that TTN5 is present in GTP-loaded active form in the cells. YFP-tagged TTN5 and the two derived mutant variants were located at multiple sites of the endomembrane system in the epidermis of Arabidopsis seedlings and Nicotiana benthamiana leaves. While YFP-TTN5 and YFP-TTN5Q70L were highly mobile in the cells, mobility was reduced for TTN5T30N. Colocalization with endomembrane markers in combination with pharmacological treatments resolved localization at membrane sites and showed that YFP-TTN5 and YFP-TTN5Q70L were located in Golgi stacks, multivesicular bodies, while this was less the case for YFP-TTN5T30N. On the other hand, all three TTN5 forms were located at the plasma membrane. Hence, the unusual capacity of rapid nucleotide exchange activity of the small ARF-like GTPase TTN5 is linked with cell membrane dynamics, likely associated with vesicle transport pathways in the endomembrane system.

3.
Int J Biol Macromol ; 243: 125135, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37247713

ABSTRACT

Translocation of channelrhodopsins (ChRs) is mediated by the intraflagellar transport (IFT) machinery. However, the functional role of the network involving photoreceptors, IFT and other proteins in controlling algal ciliary motility is still not fully delineated. In the current study, we have identified two important motifs at the C-terminus of ChR1, VXPX and LKNE. VXPX is a known ciliary targeting sequence in animals, and LKNE is a well-known SUMOylation motif. To the best of our knowledge, this study gives prima facie insight into the role of SUMOylation in Chlamydomonas. We prove that VMPS of ChR1 is important for interaction with GTPase CrARL11. We show that SUMO motifs are present in the C-terminus of putative ChR1s from green algae. Performing experiments with n-Ethylmaleimide (NEM) and Ubiquitin-like protease 1 (ULP-1), we show that SUMOylation may modulate ChR1 protein in Chlamydomonas. Experiments with 2D08, a known sumoylation blocker, increased the concentration of ChR1 protein. Finally, we show the endogenous SUMOylated proteins (SUMOylome) of C. reinhardtii, identified by using immunoprecipitation followed by nano-LC-MS/MS detection. This report establishes a link between evolutionarily conserved SUMOylation and ciliary machinery for the maintenance and functioning of cilia across the eukaryotes. Our enriched SUMOylome of C. reinhardtii comprehends the proteins related to ciliary development and photo-signaling, along with the orthologue(s) associated to human ciliopathies as SUMO targets.


Subject(s)
Chlamydomonas reinhardtii , Animals , Humans , Chlamydomonas reinhardtii/metabolism , Channelrhodopsins/metabolism , Tandem Mass Spectrometry , Biological Transport , Signal Transduction
4.
Adv Protein Chem Struct Biol ; 134: 371-439, 2023.
Article in English | MEDLINE | ID: mdl-36858741

ABSTRACT

Calcium (Ca2+) signaling is versatile communication network in the cell. Stimuli perceived by cells are transposed through Ca2+-signature, and are decoded by plethora of Ca2+ sensors present in the cell. Calmodulin, calmodulin-like proteins, Ca2+-dependent protein kinases and calcineurin B-like proteins are major classes of proteins that decode the Ca2+ signature and serve in the propagation of signals to different parts of cells by targeting downstream proteins. These decoders and their targets work together to elicit responses against diverse stress stimuli. Over a period of time, significant attempts have been made to characterize as well as summarize elements of this signaling machinery. We begin with a structural overview and amalgamate the newly identified Ca2+ sensor protein in plants. Their ability to bind Ca2+, undergo conformational changes, and how it facilitates binding to a wide variety of targets is further embedded. Subsequently, we summarize the recent progress made on the functional characterization of Ca2+ sensing machinery and in particular their target proteins in stress signaling. We have focused on the physiological role of Ca2+, the Ca2+ sensing machinery, and the mode of regulation on their target proteins during plant stress adaptation. Additionally, we also discuss the role of these decoders and their mode of regulation on the target proteins during abiotic, hormone signaling and biotic stress responses in plants. Finally, here, we have enumerated the limitations and challenges in the Ca2+ signaling. This article will greatly enable in understanding the current picture of plant response and adaptation during diverse stimuli through the lens of Ca2+ signaling.


Subject(s)
Calcium , Calmodulin , Signal Transduction
5.
Int J Biol Macromol ; 237: 124163, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36965564

ABSTRACT

Ca2+ signaling is an important biological process that enable to perceive and communicate information in the cell. Our current understanding of the signaling system suggests that plants and animals have certain differences in signal-sensing mechanisms. The Ca2+-mediated CBL-CIPK module has emerged as a major sensor responder network for Ca2+ signaling and has been speculated to be involved in plant terrestrial life adaptation. This module has previously been reported in Archaeplastids, Chromalveolates, and Excavates. In our experimental analysis of Chlamydomonas reinhardtii CBLs, we proved that the CrCBL1 protein interacts with Phototropin and Channelrhodopsin, and the expression of CrCBLs is modulated by light. Further analysis using chlorophyte and streptophyte algal sequences allowed us to identify the differences that have evolved in CBL and CIPK proteins since plants have progressed from aquatic to terrestrial habitats. Moreover, an investigation of Klebsormidium CBL and CIPK genes led us to know that they are abiotic stress stimuli-responsive, indicating that their role was defined very early during terrestrial adaptations. Structure-based prediction and Ca2+-binding assays indicated that the KnCBL1 protein in Klebsormidium showed a typical Ca2+-binding pocket. In summary, the results of this study suggest that these stress-responsive proteins enable crosstalk between Ca2+ and light signaling pathways very early during plant adaptation from aquatic to terrestrial habitats.


Subject(s)
Arabidopsis , Chlorophyta , Protein Serine-Threonine Kinases/metabolism , Arabidopsis/genetics , Calcium/metabolism , Calcium-Binding Proteins/metabolism , Plant Proteins/genetics , Plants/metabolism , Stress, Physiological , Calcium Signaling
6.
Plant J ; 109(1): 241-260, 2022 01.
Article in English | MEDLINE | ID: mdl-34748255

ABSTRACT

Calcium (Ca2+ ) is widely recognized as a key second messenger in mediating various plant adaptive responses. Here we show that calcineurin B-like interacting protein kinase CIPK9 along with its interacting partner VDAC3 identified in the present study are involved in mediating plant responses to methyl viologen (MV). CIPK9 physically interacts with and phosphorylates VDAC3. Co-localization, co-immunoprecipitation, and fluorescence resonance energy transfer experiments proved their physical interaction in planta. Both cipk9 and vdac3 mutants exhibited a tolerant phenotype against MV-induced oxidative stress, which coincided with the lower-level accumulation of reactive oxygen species in their roots. In addition, the analysis of cipk9vdac3 double mutant and VDAC3 overexpressing plants revealed that CIPK9 and VDAC3 were involved in the same pathway for inducing MV-dependent oxidative stress. The response to MV was suppressed by the addition of lanthanum chloride, a non-specific Ca2+ channel blocker indicating the role of Ca2+ in this pathway. Our study suggest that CIPK9-VDAC3 module may act as a key component in mediating oxidative stress responses in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Protein Serine-Threonine Kinases/metabolism , Voltage-Dependent Anion Channels/metabolism , Arabidopsis/drug effects , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Lanthanum/pharmacology , Oxidative Stress , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Voltage-Dependent Anion Channels/genetics
7.
Methods Mol Biol ; 2392: 161-171, 2022.
Article in English | MEDLINE | ID: mdl-34773622

ABSTRACT

Transgenic events are defined as exogenous DNA insertion in the genome through genetic transformation. It is a powerful means for the improvement of crop plants and to understand the gene function. Multiple DNA insertion events may occur at one or several chromosomal locations. One of the important tasks, after validation of the transformation of transgenic plants, is the identification of single copy in the transgenic. This means the insertion of exogenous DNA fragment only in a single locus in the genome. Southern blot hybridization is a convincing and reliable method, for estimation of copy number in transgenic lines but it is cumbersome and time-consuming process. One of the other well-known methods is quantitative polymerase chain reactions (qPCR), a simple and rapid method to identify copy number from a population of independent transgenic lines. In comparison to the Southern hybridization method, qPCR is simpler to perform, requires less DNA, lesser time and does not require any labeled probes. This method utilizes specific primers to amplify target transgenes and endogenous reference genes. Designing an appropriate and specific primer pair is a very crucial part of the estimation of the gene copy number. In this chapter, we have illustrated a detailed methodology for identification of the gene copy of the transgenic plants.


Subject(s)
Gene Dosage , Blotting, Southern , Plants, Genetically Modified/genetics , Real-Time Polymerase Chain Reaction , Transgenes
8.
Plant Cell Rep ; 40(11): 2111-2122, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34415375

ABSTRACT

Calcium (Ca2+) is a universal second messenger essential for the growth and development of plants in normal and stress situations. In plants, the proteins, CBL (calcineurin B-like) and CIPK (CBL-interacting protein kinase), form one of the important Ca2+ decoding complexes to decipher Ca2+ signals elicited by environmental challenges. Multiple interactors distinguish CBL and CIPK protein family members to form a signaling network for regulated perception and transduction of environmental signals, e.g., signals generated under nutrient stress conditions. Conservation of equilibrium in response to varying soil nutrient status is an important aspect for plant vigor and yield. Signaling processes have been reported to observe nutrient fluctuations as a signal responsible for regulated nutrient transport adaptation. Recent studies have identified downstream targets of CBL-CIPK modules as ion channels or transporters and their association in signaling nutrient disposal including potassium, nitrate, ammonium, magnesium, zinc, boron, and iron. Ca2+-CBL-CIPK pathway modulates ion transporters/channels and hence maintains a homeostasis of several important plant nutrients in the cytosol and sub-cellular compartments. In this article, we summarize recent literature to discuss the role of the Ca2+-CBL-CIPK pathway in cellular osmoregulation and homeostasis on exposure to nutrient excess or deprived soils. This further establishes a link between taking up the nutrient in the roots and its distribution and homeostasis during the generation of signal for the development and survival of plants.


Subject(s)
Plant Physiological Phenomena , Plant Proteins/metabolism , Protein Kinases/metabolism , Arabidopsis Proteins/metabolism , Calcium Signaling , Calcium-Binding Proteins/metabolism , Carbon/metabolism , Iron/metabolism , Magnesium/metabolism , Nitrogen/metabolism , Potassium/metabolism , Protein Serine-Threonine Kinases/metabolism , Soil/chemistry
9.
Front Physiol ; 12: 683920, 2021.
Article in English | MEDLINE | ID: mdl-34421635

ABSTRACT

The voltage-dependent anion channels (VDACs) are the most abundant proteins present on the outer mitochondrial membrane. They serve a myriad of functions ranging from energy and metabolite exchange to highly debatable roles in apoptosis. Their role in molecular transport puts them on the center stage as communicators between cytoplasmic and mitochondrial signaling events. Beyond their general role as interchangeable pores, members of this family may exhibit specific functions. Even after nearly five decades of their discovery, their role in plant systems is still a new and rapidly emerging field. The information on biochemical regulation of VDACs is limited. Various interacting proteins and post-translational modifications (PTMs) modulate VDAC functions, amongst these, phosphorylation is quite noticeable. In this review, we have tried to give a glimpse of the recent advancements in the biochemical/interactional regulation of plant VDACs. We also cover a critical analysis on the importance of PTMs in the functional regulation of VDACs. Besides, the review also encompasses numerous studies which can identify VDACs as a connecting link between Ca2+ and reactive oxygen species signaling in special reference to the plant systems.

10.
Plant Cell Rep ; 40(11): 2205-2223, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34250550

ABSTRACT

KEY MESSAGE: Overexpression of finger millet calmodulin imparts drought and salt tolerance in plants. Drought and salinity are major environmental stresses which affect crop productivity and therefore are major hindrance in feeding growing population world-wide. Calcium (Ca2+) signaling plays a crucial role during the plant's response to these stress stimuli. Calmodulin (CaM), a crucial Ca2+sensor, is involved in transducing the signal downstream in various physiological, developmental and stress responses by modulating a plethora of target proteins. The role of CaM has been well established in the model plant Arabidopsis thaliana for regulating various developmental processes, stress signaling and ion transport. In the current study, we investigate the CaM of Eleusine coracana (common name finger millet, known especially for its drought tolerance and superior Ca2+ content). In-silico analysis showed that Eleusine CaM (EcCaM) has greater similarity to rice CaM as compared to Arabidopsis CaM due to the presence of highly conserved four EF-hand domains. To decipher the in-planta function of EcCaM, we have adopted the gain-of-function approach by generating the 35S::EcCaM over-expression transgenic in Arabidopsis. Overexpression of EcCaM in Arabidopsis makes the plant tolerant to polyethylene glycol (PEG) induced drought and salt stress (NaCl) as demonstrated by post-germination based phenotypic assay, ion leakage, MDA and proline estimation, ROS detection under stressed and normal conditions. Moreover, EcCaM overexpression leads to hypersensitivity toward exogenously applied ABA at the seed germination stage. These findings reveal that EcCaM mediates tolerance to drought and salinity stress. Also, our results indicate that EcCaM is involved in modulating ABA signaling. Summarizing our results, we report for the first time that EcCaM is involved in modulating plants response to stress and this information can be used for the generation of future-ready crops that can tolerate a wide range of abiotic stresses.


Subject(s)
Arabidopsis/physiology , Calmodulin/genetics , Eleusine/genetics , Plant Proteins/genetics , Salt Tolerance/genetics , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Arabidopsis/anatomy & histology , Arabidopsis/drug effects , Arabidopsis/genetics , Calmodulin/chemistry , Calmodulin/metabolism , Chlorophyll/genetics , Chlorophyll/metabolism , Droughts , Eleusine/drug effects , Gene Expression Regulation, Plant , Oryza/chemistry , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants, Genetically Modified , Polyethylene Glycols/pharmacology , Protein Domains , Reactive Oxygen Species/metabolism , Salinity
11.
Curr Genomics ; 22(3): 181-213, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34975290

ABSTRACT

Changes in environmental conditions like temperature and light critically influence crop production. To deal with these changes, plants possess various photoreceptors such as Phototropin (PHOT), Phytochrome (PHY), Cryptochrome (CRY), and UVR8 that work synergistically as sensor and stress sensing receptors to different external cues. PHOTs are capable of regulating several functions like growth and development, chloroplast relocation, thermomorphogenesis, metabolite accumulation, stomatal opening, and phototropism in plants. PHOT plays a pivotal role in overcoming the damage caused by excess light and other environmental stresses (heat, cold, and salinity) and biotic stress. The crosstalk between photoreceptors and phytohormones contributes to plant growth, seed germination, photo-protection, flowering, phototropism, and stomatal opening. Molecular genetic studies using gene targeting and synthetic biology approaches have revealed the potential role of different photoreceptor genes in the manipulation of various beneficial agronomic traits. Overexpression of PHOT2 in Fragaria ananassa leads to the increase in anthocyanin content in its leaves and fruits. Artificial illumination with blue light alone and in combination with red light influence the growth, yield, and secondary metabolite production in many plants, while in algal species, it affects growth, chlorophyll content, lipid production and also increases its bioremediation efficiency. Artificial illumination alters the morphological, developmental, and physiological characteristics of agronomic crops and algal species. This review focuses on PHOT modulated signalosome and artificial illumination-based photo-biotechnological approaches for the development of climate-smart crops.

12.
FEBS J ; 288(3): 756-785, 2021 02.
Article in English | MEDLINE | ID: mdl-32542989

ABSTRACT

Protein phosphorylation is a major reversible post-translational modification. Protein phosphatases function as 'critical regulators' in signaling networks through dephosphorylation of proteins, which have been phosphorylated by protein kinases. A large understanding of their working has been sourced from animal systems rather than the plant or the prokaryotic systems. The eukaryotic protein phosphatases include phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine(Ser)/threonine(Thr)-specific phosphatases (STPs), while PTP family is Tyr specific. Dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. PTPs lack sequence homology with STPs, indicating a difference in catalytic mechanisms, while the PPP and PPM families share a similar structural fold indicating a common catalytic mechanism. The catalytic cysteine (Cys) residue in the conserved HCX5 R active site motif of the PTPs acts as a nucleophile during hydrolysis. The PPP members require metal ions, which coordinate the phosphate group of the substrate, followed by a nucleophilic attack by a water molecule and hydrolysis. The variable holoenzyme assembly of protein phosphatase(s) and the overlap with other post-translational modifications like acetylation and ubiquitination add to their complexity. Though their functional characterization is extensively reported in plants, the mechanistic nature of their action is still being explored by researchers. In this review, we exclusively overview the plant protein phosphatases with an emphasis on their mechanistic action as well as structural characteristics.


Subject(s)
Catalytic Domain , Phosphoprotein Phosphatases/metabolism , Plant Proteins/metabolism , Protein Domains , Signal Transduction , Biocatalysis , Models, Molecular , Phosphoprotein Phosphatases/chemistry , Phosphoprotein Phosphatases/classification , Phosphorylation , Plant Proteins/chemistry , Protein Subunits/chemistry , Protein Subunits/metabolism , Substrate Specificity
13.
Crit Rev Biotechnol ; 40(5): 715-732, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32338074

ABSTRACT

Molecular trafficking between different subcellular compartments is the key for normal cellular functioning. Voltage-dependent anion channels (VDACs) are small-sized proteins present in the outer mitochondrial membrane, which mediate molecular trafficking between mitochondria and cytoplasm. The conductivity of VDAC is dependent on the transmembrane voltage, its oligomeric state and membrane lipids. VDAC acts as a convergence point to a diverse variety of mitochondrial functions as well as cell survival. This functional diversity is attained due to their interaction with a plethora of proteins inside the cell. Although, there are hints toward functional conservation/divergence between animals and plants; knowledge about the functional role of the VDACs in plants is still limited. We present here a comparative overview to provide an integrative picture of the interactions of VDAC with different proteins in both animals and plants. Also discussed are their physiological functions from the perspective of cellular movements, signal transduction, cellular fate, disease and development. This in-depth knowledge of the biological importance of VDAC and its interacting partner(s) will assist us to explore their function in the applied context in both plant and animal.


Subject(s)
Host-Pathogen Interactions/physiology , Mitochondrial Membranes/metabolism , Plants/metabolism , Voltage-Dependent Anion Channels/metabolism , Animals , Apoptosis/physiology , Mitochondria/metabolism , Mitochondria/physiology , Neoplasms/metabolism , Plant Diseases , Signal Transduction
14.
Front Plant Sci ; 11: 50, 2020.
Article in English | MEDLINE | ID: mdl-32184792

ABSTRACT

Voltage-dependent anion channels (VDACs) are conserved proteins of the mitochondria. We have functionally compared Arabidopsis VDACs using Saccharomyces cerevisiae Δpor1 and M3 yeast system. VDAC (1, 2, and 4) were able to restore Δpor1 growth in elevated temperature, in oxidative and salt stresses, whereas VDAC3 only partially rescued Δpor1 in these conditions. The ectopic expression of VDAC (1, 2, 3, and 4) in mutant yeast recapitulated the mitochondrial membrane potential thus, enabled it to maintain reactive oxygen species homeostasis. Overexpression of these VDACs (AtVDACs) in M3 strain did not display any synergistic or antagonistic activity with the native yeast VDAC1 (ScVDAC1). Collectively, our data suggest that Arabidopsis VDACs are involved in regulating respiration, reactive oxygen species homeostasis, and stress tolerance in yeast.

15.
Biochem J ; 477(5): 853-871, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32129820

ABSTRACT

Calcium (Ca2+) signaling is a versatile signaling network in plant and employs very efficient signal decoders to transduce the encoded message. The CBL-CIPK module is one of the sensor-relay decoders that have probably evolved with the acclimatization of land plant. The CBLs are unique proteins with non-canonical Ca2+ sensing EF-hands, N-terminal localization motif and a C-terminal phosphorylation motif. The partner CIPKs are Ser/Thr kinases with kinase and regulatory domains. Phosphorylation plays a major role in the functioning of the module. As the module has a functional kinase to transduce signal, it employs phosphorylation as a preferred mode for modulation of targets as well as its interaction with CBL. We analyze the data on the substrate regulation by the module from the perspective of substrate phosphorylation. We have also predicted some of the probable sites in the identified substrates that may be the target of the CIPK mediated phosphorylation. In addition, phosphatases have been implicated in reversing the CIPK mediated phosphorylation of substrates. Therefore, we have also presented the role of phosphatases in the modulation of the CBL-CIPK and its targets. We present here an overview of the phosphoregulation mechanism of the CBL-CIPK module.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Calcium Signaling/physiology , Calcium-Binding Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Calcium-Binding Proteins/genetics , Phosphorylation/physiology , Protein Serine-Threonine Kinases/genetics
16.
Biochem J ; 475(16): 2621-2636, 2018 08 30.
Article in English | MEDLINE | ID: mdl-30054434

ABSTRACT

Calcium (Ca2+) is a versatile and ubiquitous second messenger in all eukaryotes including plants. In response to various stimuli, cytosolic calcium concentration ([Ca2+]cyt) is increased, leading to activation of Ca2+ sensors including Arabidopsis calcineurin B-like proteins (CBLs). CBLs interact with CBL-interacting protein kinases (CIPKs) to form CBL-CIPK complexes and transduce the signal downstream in the signalling pathway. Although there are many reports on the regulation of downstream targets by CBL-CIPK module, knowledge about the regulation of upstream components by individual CIPKs is inadequate. In the present study, we have carried out a detailed biochemical characterization of CIPK9, a known regulator of K+ deficiency in Arabidopsis, with its interacting CBLs. The present study suggests that CIPK9 specifically interacts with four CBLs, i.e. CBL1, CBL2, CBL3 and CBL9, in yeast two-hybrid assays. Out of these four CBLs, CBL2 and CBL3, specifically enhance the kinase activity of CIPK9, while the CBL1 and CBL9 decrease it as examined by in vitro kinase assays. In contrast, truncated CIPK9 (CIPK9ΔR), without the CBL-interacting regulatory C-terminal region, is not differentially activated by interacting CBLs. The protein phosphorylation assay revealed that CBL2 and CBL3 serve as preferred substrates of CIPK9. CBL2- and CBL3-CIPK9 complexes show altered requirement for metal cofactors when compared with CIPK9 alone. Moreover, the autophosphorylation of constitutively active CIPK9 (CIPK9T178D) and less active CIPK9 (CIPK9T178A) in the presence of CBL2 and CBL3 was further enhanced. Our study suggests that CIPK9 differentially phosphorylates interacting CBLs, and furthermore, the kinase activity of CIPK9 is also differentially regulated by specific interacting CBLs.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Calcium-Binding Proteins/metabolism , Multiprotein Complexes/metabolism , Protein Serine-Threonine Kinases/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Calcium-Binding Proteins/genetics , Multiprotein Complexes/genetics , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Two-Hybrid System Techniques
17.
J Exp Bot ; 69(16): 4003-4015, 2018 07 18.
Article in English | MEDLINE | ID: mdl-29767755

ABSTRACT

Potassium (K+) is a major macronutrient required for plant growth. An adaptive mechanism to low-K+ conditions involves activation of the Ca2+ signaling network that consists of calcineurin B-like proteins (CBLs) and CBL-interacting kinases (CIPKs). The CBL-interacting protein kinase 9 (CIPK9) has previously been implicated in low-K+ responses in Arabidopsis thaliana. Here, we report a protein phosphatase 2C (PP2C), AP2C1, that interacts with CIPK9. Fluorescence resonance energy transfer (FRET), bimolecular fluorescence complementation (BiFC), and co-localization analyses revealed that CIPK9 and AP2C1 interact in the cytoplasm. AP2C1 dephosphorylates the auto-phosphorylated form of CIPK9 in vitro, presenting a regulatory mechanism for CIPK9 function. Furthermore, genetic and molecular analyses revealed that ap2c1 null mutants (ap2c1-1 and ap2c1-2) are tolerant to low-K+ conditions, retain higher K+ content, and show higher expression of K+-deficiency related genes contrary to cipk9 mutants (cipk9-1 and cipk9-2). In contrast, transgenic plants overexpressing AP2C1 were sensitive to low-K+ conditions. Thus, this study shows that AP2C1 and CIPK9 interact to regulate K+-deficiency responses in Arabidopsis. CIPK9 functions as positive regulator whereas AP2C1 acts as a negative regulator of Arabidopsis root growth and seedling development under low-K+ conditions.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Phosphoprotein Phosphatases/metabolism , Potassium/metabolism , Protein Serine-Threonine Kinases/metabolism , Arabidopsis/genetics , Homeostasis , Mutation , Phosphorylation , Protein Binding , Signal Transduction
18.
Front Plant Sci ; 8: 1924, 2017.
Article in English | MEDLINE | ID: mdl-29225607

ABSTRACT

Calcium (Ca2+) signaling is pivotal in transmission of information in the cell. Various Ca2+ sensing molecules work to sense and relay the encrypted messages to the intended targets in the cell to maintain this signal transduction. CBL-interacting protein kinases (CIPKs) are crucial components of Ca2+ signal transduction during various abiotic stresses. Although there are intron rich CIPKs in the plant genome but very little has been reported about their alternative splicing. Moreover the physiological significance of this event in the Ca2+ signaling is still elusive. Therefore in this study, we have selected CIPK3, which has highest number of splice variants amongst Arabidopsis CIPKs. Expression profiling of five splice variants of CIPK3 by qRT-PCR in four Arabidopsis thaliana ecotypes revealed preferential transcript accumulation but similar subcellular localization of the variants and interaction with similar CBLs. ABA and drought treatment resulted in the higher accumulation of the alternately spliced transcripts of CIPK3 in Arabidopsis ecotype Wassilewkija. The transcripts of CIPK3.1 and CIPK3.4 are relatively more induced compared to other alternative splice variants. Out of four splice variants studied, we found CIPK3.1 and CIPK3.2 showing preference for ABR1, a previously reported interactor of CIPK3. We conclude that the differential expression and choice of downstream partner by CIPK3-splice variants might be one of the mechanisms of Ca2+ mediated preferential regulation of ABA and other stress signals.

19.
Plant Sci ; 254: 48-59, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27964784

ABSTRACT

Calcium (Ca2+) plays a vital role as a second messenger in several signaling pathways in plants. The calcineurin B-like proteins (CBLs) represent a family of plant calcium-binding proteins that function in propagating Ca2+ signals by interacting with CBL interacting protein kinases (CIPKs). Phosphorylation of CBL by CIPK is essential for the module to display full activity towards its target protein. Previous genetic analysis showed that the function of CBL9-CIPK3 module was implicated in negatively regulating seed germination and early development. In the present study, we have biochemically investigated the interaction of CBL9-CIPK3 module and our findings show that CBL9 is phosphorylated by CIPK3. Moreover, Abscisic acid repressor 1 (ABR1) is identified as the downstream target of CIPK3 and CIPK3-ABR1 function to regulate ABA responses during seed germination. Our study also indicates that the role of ABR1 is not limited to seed germination but it also regulates the ABA dependent processes in the adult stage of plant development. Combining our results, we conclude that the CBL9-CIPK3-ABR1 pathway functions to regulate seed germination and ABA dependent physiological processes in Arabidopsis.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/physiology , Arabidopsis/metabolism , Protein Serine-Threonine Kinases/physiology , Transcription Factors/physiology , Arabidopsis/genetics , Arabidopsis Proteins/analysis , Arabidopsis Proteins/metabolism , Calcium/metabolism , Calcium-Binding Proteins/metabolism , Cell Nucleus/metabolism , Germination , Phosphorylation , Protein Serine-Threonine Kinases/analysis , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/genetics , Stress, Physiological , Transcription Factors/analysis , Transcription Factors/metabolism
20.
Plant Physiol ; 169(1): 780-92, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26198257

ABSTRACT

The role of calcium-mediated signaling has been extensively studied in plant responses to abiotic stress signals. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) constitute a complex signaling network acting in diverse plant stress responses. Osmotic stress imposed by soil salinity and drought is a major abiotic stress that impedes plant growth and development and involves calcium-signaling processes. In this study, we report the functional analysis of CIPK21, an Arabidopsis (Arabidopsis thaliana) CBL-interacting protein kinase, ubiquitously expressed in plant tissues and up-regulated under multiple abiotic stress conditions. The growth of a loss-of-function mutant of CIPK21, cipk21, was hypersensitive to high salt and osmotic stress conditions. The calcium sensors CBL2 and CBL3 were found to physically interact with CIPK21 and target this kinase to the tonoplast. Moreover, preferential localization of CIPK21 to the tonoplast was detected under salt stress condition when coexpressed with CBL2 or CBL3. These findings suggest that CIPK21 mediates responses to salt stress condition in Arabidopsis, at least in part, by regulating ion and water homeostasis across the vacuolar membranes.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Osmosis/drug effects , Sodium Chloride/pharmacology , Stress, Physiological/drug effects , Arabidopsis/drug effects , Arabidopsis/genetics , Calcium-Binding Proteins/metabolism , DNA, Bacterial/genetics , Gene Expression Regulation, Plant/drug effects , Genetic Complementation Test , Mannitol/pharmacology , Models, Biological , Mutagenesis, Insertional/drug effects , Mutation/genetics , Phenotype , Protein Serine-Threonine Kinases/metabolism , Up-Regulation/drug effects , Vacuoles/drug effects , Vacuoles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...