Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
ACS Appl Electron Mater ; 6(5): 2951-2959, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38828038

ABSTRACT

Ternary pnictide semiconductors with II-IV-V2 stoichiometry hold potential as cost-effective thermoelectric materials with suitable electronic transport properties, but their lattice thermal conductivities (κ) are typically too high. Insights into their vibrational properties are therefore crucial to finding strategies to reduce κ and achieve improved thermoelectric performance. We present a theoretical exploration of the lattice thermal conductivities for a set of pnictide semiconductors with ABX2 composition (A = Zn, Cd; B = Si, Ge, Sn; and X = P, As) using machine-learning-based regression algorithms to extract force constants from a reduced number of density functional theory simulations and then solving the Boltzmann transport equation for phonons. Our results align well with available experimental data, decreasing the mean absolute error by ∼3 W m-1 K-1 with respect to the best previous set of theoretical predictions. Zn-based ternary pnictides have, on average, more than double the thermal conductivity of the Cd-based compounds. Anisotropic behavior increases with the mass difference between A and B cations, but while the nature of the anion does not affect the structural anisotropy, the thermal conductivity anisotropy is typically higher for arsenides than for phosphides. We identify compounds such as CdGeAs2, for which nanostructuring to an affordable range of particle sizes could lead to κ values low enough for thermoelectric applications.

2.
ACS Appl Mater Interfaces ; 16(22): 28590-28598, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38772346

ABSTRACT

Rational design principles are one pathway to discovering new materials. However, technological breakthroughs rarely occur in this way because these design principles are usually based on incremental advances that seldom lead to disruptive applications. The emergence of machine-learning (ML) and high-throughput (HT) techniques has changed the paradigm, opening up new possibilities for efficiently screening large chemical spaces and creating on-the-fly design principles for the discovery of novel materials with desired properties. In this work, the approach is used to discover novel thermoelectric (TE) materials based on quaternary diamond-like chalcogenides. A HT framework that integrates density functional theory calculations, ML, and the solution of the Boltzmann transport equation is used to efficiently rationalize the transport properties of these compounds and identify those with potential as TE materials, achieving ZT values above 2.

3.
ACS Appl Mater Interfaces ; 16(4): 4606-4617, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38253557

ABSTRACT

Thermal and electronic transport properties are the keys to many technological applications of materials. Thermoelectric, TE, materials can be considered a singular case in which not only one but three different transport properties are combined to describe their performance through their TE figure of merit, ZT. Despite the availability of high-throughput experimental techniques, synthesizing, characterizing, and measuring the properties of samples with numerous variables affecting ZT are not a cost- or time-efficient approach to lead this strategy. The significance of computational materials science in discovering new TE materials has been running in parallel to the development of new frameworks and methodologies to compute the electron and thermal transport properties linked to ZT. Nevertheless, the trade-off between computational cost and accuracy has hindered the reliable prediction of TE performance for large chemical spaces. In this work, we present for the first time the combination of new ab initio methodologies to predict transport properties with machine learning and a high-throughput framework to establish a solid foundation for the accurate prediction of thermal and electron transport properties. This strategy is applied to a whole family of materials, binary skutterudites, which are well-known as good TE candidates. Following this methodology, it is possible not only to connect ZT with the experimental synthetic (carrier concentration and grain size) and operando (temperature) variables but also to understand the physical and chemical phenomena that act as driving forces in the maximization of ZT for p-type and n-type binary skutterudites.

4.
Phys Chem Chem Phys ; 19(22): 14580-14587, 2017 Jun 07.
Article in English | MEDLINE | ID: mdl-28537283

ABSTRACT

Quantum dot-sensitized solar cells, QDSCs, are a clean and effective alternative to fossil fuels to reduce CO2 emissions. However, the different components that constitute the QDSCs and the difficulty of isolating experimentally their effects on the performance of the whole system slow down the development of more efficient devices. In this work, DFT calculations are combined with a bottom-up approach to differentiate the effect of each component on the electronic structure and absorption spectra. First, Cu2S QDs were built including a U parameter to effectively describe the localization of electrons. The effect of capping agents is addressed using ligands with different electron-donating/withdrawing groups. The role of linkers and their adsorption on the oxide surface are also examined. Finally, we propose a main indirect electron injection mechanism based on the position of the peaks of the spectra.

5.
J Chem Phys ; 137(11): 114709, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22998283

ABSTRACT

A theoretical study of the H(2)O-Au(1 1 1) interface based on first principles density functional theory (DFT) calculations with and without inclusion of dispersion correction is reported. Three different computational approaches are considered. First, the standard generalized gradient approximation (GGA) functional PBE is employed. Second, an additional energy term is further included that adds a semi-empirically derived dispersion correction (PBE-D2), and, finally, a recently proposed functional that includes van der Waals (vdW) interactions directly in its functional form (optB86b-vdW) was used to represent the state-of-the art of DFT functionals. The monomeric water adsorption was first considered in order to explore the dependency of geometry on the details of the model slab used to represent it (size, thickness, coverage). When the dispersion corrections are included the Au-H(2)O interaction is stronger, as manifested by the smaller d(Au-O) and stronger adsorption energies. Additionally, the interfacial region between Au(1 1 1) slab surfaces and a liquid water layer was investigated with Born-Oppenheimer molecular dynamics (BOMD) using the same functionals. Two or three interfacial orientations can be determined, depending on the theoretical methodology applied. Closest to the surface, H(2)O is adsorbed O-down, whereas further away it is oriented with one OH bond pointing to the surface and the molecular plane parallel to the normal direction. For the optB86b-vdW functional a third orientation is found where one H atom points into the bulk water layer and the second OH bond is oriented parallel to the metal surface. As for the water density in the first adsorption layer we find a very small increase of roughly 8%. From the analysis of vibrational spectra a weakening of the H-bond network is observed upon the inclusion of the Au(1 1 1) slab, however, no disruption of H-bonds is observed. While the PBE and PBE-D2 spectra are very similar, the optB86b-vdW spectrum shows that the H-bonds are even more weakened.

6.
J Chem Phys ; 136(19): 194702, 2012 May 21.
Article in English | MEDLINE | ID: mdl-22612104

ABSTRACT

In this work, new coumarin based dyes for dye sensitized solar cells (DSSC) have been designed by introducing several substituent groups in different positions of the NKX-2311 structure. Two types of substitutions have been considered: the introduction of three electron-donating groups (-OH, -NH(2), and -OCH(3)) and two different substituents with steric effect: -CH(2)-CH(2)-CH(2)- and -CH(2)-HC=CH-. The electronic absorption spectra (position and width of the first band and absorption threshold) and the position of the LUMO level related to the conduction band have been used as theoretical criteria to evaluate the efficiency of the new dyes. The introduction of a -NH(2) group produces a redshift of the absorption maximum position and the absorption threshold, which could improve the cell efficiency. In contrast, the introduction of -CH(2)-CH(2)-CH(2)- does not modify significantly the electronic structure of NKX-2311, but it might prevent aggregation. Finally, -CH(2)-HC=CH- produces important changes both in the electronic spectrum and in the electronic structure of the dye, and it would be expected as an improvement of cell efficiency for these dyes.

7.
J Chem Phys ; 136(4): 041101, 2012 Jan 28.
Article in English | MEDLINE | ID: mdl-22299851

ABSTRACT

Density functional theory (DFT) based approaches within the local-density approximation or generalized gradient approximation frameworks fail to predict the correct electron localization in strongly correlated systems due to the lack of cancellation of the Coulomb self-interaction. This problem might be circumvented either by using hybrid functionals or by introducing a Hubbard-like term to account for the on site interactions. This latter DFT+U approach is less expensive and therefore more practical for extensive calculations in solid-state computational simulations. By and large, the U term only affects the metal electrons, in our case the Ce 4f ones. In the present work, we report a systematic analysis of the effect of adding such a U term also to the oxygen 2p electrons. We find that using a set of U(f) = 5 eV and U(p) = 5eV effective terms leads to improved description of the lattice parameters, band gaps, and formation and reduction energies of CeO(2).

8.
Phys Chem Chem Phys ; 14(1): 225-33, 2012 Jan 07.
Article in English | MEDLINE | ID: mdl-22080195

ABSTRACT

Time dependent density functional theory (TD-DFT) calculations have been carried out to study the electronic structure and the optical properties of five coumarin based dyes: C343, NKX-2311, NKX-2586, NKX-2753 and NKX-2593. We have found out that the position and width of the first band in the electronic absorption spectra, the absorption threshold and the LUMO energy with respect to the conduction band edge are key parameters in order to establish some criteria that allow evaluating the efficiency of coumarin derivatives as sensitizers in Dye Sensitized Solar Cells (DSSC). Those criteria predict the efficiency ordering for the coumarin series in good agreement with the experimental evidence. Presumably, they might be used in the design of new efficient organic based DSSC.

10.
Phys Chem Chem Phys ; 13(23): 11340-50, 2011 Jun 21.
Article in English | MEDLINE | ID: mdl-21566817

ABSTRACT

The interaction between implanted nitrogen atoms, adsorbed gold atoms, and oxygen vacancies at the anatase TiO(2)(101) surface is investigated by means of periodic density functional theory calculations. Substitutional and interstitial configurations for the N-doping have been considered, as well as several adsorption sites for Au adatoms and different types of vacancies. Our total energy calculations suggest that a synergetic effect takes place between the nitrogen doping on one hand and the adsorption of gold and vacancy formation on the other hand. Thus, while pre-implanted nitrogen increases the adsorption energy for gold and decreases the energy required for the formation of an oxygen vacancy, pre-adsorbed gold or the presence of oxygen vacancies favors the nitrogen doping of anatase. The analysis of the electronic structure and electron densities shows that a charge transfer takes place between implanted-N, adsorbed Au and oxygen vacancies. Moreover, it is predicted that the creation of vacancies on the anatase surface modified with both implanted nitrogen and supported gold atoms produces migration of substitutional N impurities from bulk to surface sites. In any case, the most stable configurations are those where N, Au and vacancies are close to each other.

11.
J Am Chem Soc ; 133(10): 3444-51, 2011 Mar 16.
Article in English | MEDLINE | ID: mdl-21341793

ABSTRACT

A Cu(111) surface displays a low activity for the oxidation of carbon monoxide (2CO + O(2) → 2CO(2)). Depending on the temperature, background pressure of O(2), and the exposure time, one can get chemisorbed O on Cu(111) or a layer of Cu(2)O that may be deficient in oxygen. The addition of ceria nanoparticles (NPs) to Cu(111) substantially enhances interactions with the O(2) molecule and facilitates the oxidation of the copper substrate. In images of scanning tunneling microscopy, ceria NPs exhibit two overlapping honeycomb-type moiré structures, with the larger ones (H(1)) having a periodicity of 4.2 nm and the smaller ones (H(2)) having a periodicity of 1.20 nm. After annealing CeO(2)/Cu(111) in O(2) at elevated temperatures (600-700 K), a new phase of a Cu(2)O(1+x) surface oxide appears and propagates from the ceria NPs. The ceria is not only active for O(2) dissociation, but provides a much faster channel for oxidation than the step edges of Cu(111). Exposure to CO at 550-750 K led to a partial reduction of the ceria NPs and the removal of the copper oxide layer. The CeO(x)/Cu(111) systems have activities for the 2CO + O(2) → 2CO(2) reaction that are comparable or larger than those reported for surfaces of expensive noble metals such as Rh(111), Pd(110), and Pt(100). Density-functional calculations show that the supported ceria NPs are able to catalyze the oxidation of CO due to their special electronic and chemical properties. The configuration of the inverse oxide/metal catalyst opens new interesting routes for applications in catalysis.

12.
J Chem Theory Comput ; 7(1): 56-65, 2011 Jan 11.
Article in English | MEDLINE | ID: mdl-26606218

ABSTRACT

The outstanding catalytic properties of cerium oxides rely on the easy Ce(3+) ↔ Ce(4+) redox conversion, which however constitutes a challenge in density functional based theoretical chemistry due to the strongly correlated nature of the 4f electrons present in the reduced materials. In this work, we report an analysis of the performance of five exchange-correlation functionals (HH, HHLYP, PBE0, B3LYP, and B1-WC) implemented in the CRYSTAL06 code to describe three properties of ceria: crystal structure, band gaps, and reaction energies of the CeO2 → Ce2O3 process. All five functionals give values for cell parameters that are in fairly good agreement with experiment, although the PBE0 hybrid functional is found to be the most accurate. Band gaps, 2p-4f-5d in the case of CeO2 and 4f-5d in the case of Ce2O3, are found to be, in general, overestimated and drop off when the amount of Hartree-Fock exchange in the exchange-correlation functional decreases. In contrast, the reaction energies are found to be underestimated, and increase when the amount of HF exchange lowers. Overall, at its standard formulation, the B1-WC functional seems to be the best choice as it provides good band gaps and reaction energies, and very reasonable crystal parameters.

13.
J Chem Phys ; 132(10): 104703, 2010 Mar 14.
Article in English | MEDLINE | ID: mdl-20232980

ABSTRACT

The structural and electronic properties of CeO(x) species supported on the rutile TiO(2)(110) surface have been examined by means of periodic density-functional calculations that use a generalized gradient approximation functional including a Hubbard-like type correction. Deposition of Ce atoms leads in a first step to Ce(3+) ions bound to the surface through bridge and in-plane oxygen atoms, the released electrons occupying the Ti 3d empty orbitals. Further addition of Ce and molecular oxygen gives place to Ce(2)O(3) dimers diagonally arranged on the surface, in agreement with the spots observed in the scanning tunnel microscope images. The formation process of CeO(x) nanoparticles (NPs) on the TiO(2) surface is highly exothermic and our calculations show that the redox properties of the Ce(III)-Ce(IV) couple are significantly altered when it is supported on TiO(2). In particular the reactivity against CO/O(2) indicates that on the surface the presence of Ce(III) is favored over Ce(IV) species. Our results also indicate that the CeO(x)/TiO(2) interface should be seen like a real mixed-metal oxide rather than a supported NP of ceria. Finally, in the context of the high catalytic activity of the M/CeO(x)/TiO(2) (M=Au,Cu,Pt) systems in the water-gas shift reaction, we have examined the dissociation of water on the CeO(x)/TiO(2) surface and estimated a barrier as small as 0.04 eV, i.e. approximately 8 times smaller than that computed for a TiO(2) oxygen vacancy. This result agrees with the experimental superior catalytic activity of the M/CeO(x)/TiO(2) systems over M/TiO(2).

14.
J Chem Theory Comput ; 6(9): 2856-65, 2010 Sep 14.
Article in English | MEDLINE | ID: mdl-26616086

ABSTRACT

The structural and electronic properties of the alizarin dye supported on TiO2 nanoclusters have been examined by means of time-dependent density-functional (TD-DFT) calculations performed in the time-domain framework. The calculated electronic absorption spectrum of free alizarin shows a first band centered at 2.67 eV that upon adsorption features a red shift by 0.31 eV, in agreement with both experimental and previous theoretical work. This red shift arises from a relative stabilization of the dye LUMO when adsorbed. To analyze the dependence of the electronic properties of the dye-support couple on the size of metal-oxide nanoparticles, different models of (TiO2)n nanoclusters have been used (with n = 1, 2, 3, 6, 9, 15, and 38). As a conclusion, the minimal model is good enough to theoretically reproduce the main feature in the spectrum (i.e., the energy shift of the main band upon binding to TiO2). However, it fails in creating intermediate states which could play a significant role under real experimental conditions (dynamics of the electronic transfer). Indeed, as the size of the nanocluster grows, the dye LUMO moves from the edge to well inside the conduction band (Ti 3d band). On the other hand, to assess the consistency of the time-domain approach in the case of such systems, conventional (frequency-domain) TD-DFT calculations have been carried out. It is found that, as far as the functional and basis set are equivalent, both approaches lead to similar results. While for small systems the standard TD-DFT is better suited, for medium to large sized systems, the real-time TD-DFT becomes competitive and more efficient.

15.
Phys Chem Chem Phys ; 11(26): 5246-52, 2009 Jul 14.
Article in English | MEDLINE | ID: mdl-19551191

ABSTRACT

We use density functional theory calculations with Hubbard corrections (DFT+U) to investigate electronic aspects of the interaction between ceria surfaces and gold atoms. Our results show that Au adatoms at the (111) surface of ceria can adopt Au(0), Au(+) or Au(-) electronic configurations depending on the adsorption site. The strongest adsorption sites are on top of the surface oxygen and in a bridge position between two surface oxygen atoms, and in both cases charge transfer from the gold atom to one of the Ce cations at the surface is involved. Adsorption at other sites, including the hollow sites of the surface, and an O-Ce bridging site, is weaker and does not involve charge transfer. Adsorption at an oxygen vacancy site is very strong and involves the formation of an Au(-) anion. We argue that the ability of gold atoms to stabilise oxygen vacancies at the ceria surface by moving into the vacancy site and attracting the excess electrons of the defect could be responsible for the enhanced reducibility of ceria surfaces in the presence of gold. Finally, we rationalise the differences in charge transfer behaviour from site to site in terms of the electrostatic potential at the surface and the coordination of the species.


Subject(s)
Cerium/chemistry , Electrons , Gold/chemistry , Quantum Theory , Models, Molecular , Surface Properties
16.
J Am Chem Soc ; 128(49): 15600-1, 2006 Dec 13.
Article in English | MEDLINE | ID: mdl-17147364

ABSTRACT

Using first principles DF calculations we have studied the structural and catalytic properties of Au supported on TiOx-Mo(112) films. Our theoretical models are consistent with an initial (8 x 2) Mo(112)-Ti2O3 pattern which after Au deposition gives rise to ordered Au films that completely wet the surface. The oxidation of CO on model surfaces at coverage 1, 4/3, and 5/2 ML has been analyzed. The oxidation proceeds through a peroxo-like complex in which molecular oxygen is simultaneously bound to the CO and the surface. The energy barrier computed for a Au coverage of 4/3 ML is found significantly lower in agreement with the unusual high activity observed for this catalyst. The detailed analysis of the geometry and electronic structure provides a fundamental understanding of the reaction.

17.
J Chem Phys ; 124(19): 194105, 2006 May 21.
Article in English | MEDLINE | ID: mdl-16729801

ABSTRACT

The constrained space orbital variation (CSOV) method for the analysis of the interaction energy has been implemented in the periodic ab initio CRYSTAL03 code. The method allows for the partition of the energy of two interacting chemical entities, represented in turn by periodic models, into contributions which account for electrostatic effects, mutual polarization and charge transfer. The implementation permits one to carry out the analysis both at the Hartree-Fock and density functional theory levels, where in the latter the most popular exchange-correlation functionals can be used. As an illustrating example, the analysis of the interaction between CO and the MgO (001) surface has been considered. As expected by the almost fully ionic character of the support, our periodic CSOV results, in general agree with those previously obtained using the embedded cluster approach, showing the reliability of the present implementation.

18.
Phys Rev Lett ; 94(1): 016104, 2005 Jan 14.
Article in English | MEDLINE | ID: mdl-15698102

ABSTRACT

The growth mechanism of the Cu/alpha-Al(2)O(3) (0001) interface is studied by first-principles molecular-dynamics simulations as a function of the transition-metal coverage (theta) and the temperature of the system. On the anhydrous surface growth of Cu(0) 3D clusters is predicted. On the partially hydroxylated surface, a Cu(I) monolayer, relatively stable upon the temperature rising, is first observed (theta<1/3 ML). Increasing Cu loading leads to Cu(I)/Cu(0) mixed phases that when heated aggregate into 3D particles increasing the number of Cu(0) atoms, in agreement with the Auger spectra of Kelber et al.

SELECTION OF CITATIONS
SEARCH DETAIL