Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 1951, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37029122

ABSTRACT

Malaria parasites like Plasmodium falciparum multiply in red blood cells (RBC), which are cleared from the bloodstream by the spleen when their deformability is altered. Drug-induced stiffening of Plasmodium falciparum-infected RBC should therefore induce their elimination from the bloodstream. Here, based on this original mechanical approach, we identify safe drugs with strong potential to block the malaria transmission. By screening 13 555 compounds with spleen-mimetic microfilters, we identified 82 that target circulating transmissible form of P. falciparum. NITD609, an orally administered PfATPase inhibitor with known effects on P. falciparum, killed and stiffened transmission stages in vitro at nanomolar concentrations. Short exposures to TD-6450, an orally-administered NS5A hepatitis C virus inhibitor, stiffened transmission parasite stages and killed asexual stages in vitro at high nanomolar concentrations. A Phase 1 study in humans with a primary safety outcome and a secondary pharmacokinetics outcome ( https://clinicaltrials.gov , ID: NCT02022306) showed no severe adverse events either with single or multiple doses. Pharmacokinetic modelling showed that these concentrations can be reached in the plasma of subjects receiving short courses of TD-6450. This physiologically relevant screen identified multiple mechanisms of action, and safe drugs with strong potential as malaria transmission-blocking agents which could be rapidly tested in clinical trials.


Subject(s)
Antimalarials , Malaria, Falciparum , Humans , Antimalarials/pharmacology , Spleen , Malaria, Falciparum/parasitology , Plasmodium falciparum , Erythrocytes/parasitology
2.
Int J Parasitol Drugs Drug Resist ; 17: 186-190, 2021 12.
Article in English | MEDLINE | ID: mdl-34673330

ABSTRACT

Emerging artemisinin resistance in Plasmodium falciparum malaria has the potential to become a global public health crisis. In Southeast Asia, this phenomenon clinically manifests in the form of delayed parasite clearance following artemisinin treatment. Reduced artemisinin susceptibility is limited to the early ring stage window, which is sufficient to allow parasites to survive the short half-life of artemisinin exposure. A screen of known clinically-implemented antimalarial drugs was performed to identify a drug capable of enhancing the killing activity of artemisinins during this critical resistance window. As a result, lumefantrine was found to increase the killing activity of artemisinin against an artemisinin-resistant clinical isolate harboring the C580Y kelch13 mutation. Isobologram analysis revealed synergism during the early ring stage resistance window, when lumefantrine was combined with artemether, an artemisinin derivative clinically partnered with lumefantrine. These findings suggest that lumefantrine should be clinically explored as a partner drug in artemisinin-based combination therapies to control emerging artemisinin resistance.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Drug Resistance , Humans , Lumefantrine , Malaria, Falciparum/drug therapy , Plasmodium falciparum/genetics , Protozoan Proteins
3.
Article in English | MEDLINE | ID: mdl-30580023

ABSTRACT

Artemisinin derivatives and their partner drugs in artemisinin combination therapies (ACTs) have played a pivotal role in global malaria mortality reduction during the last two decades. The loss of artemisinin efficacy due to evolving drug-resistant parasites could become a serious global health threat. Dihydroartemisinin-piperaquine is a well tolerated and generally highly effective ACT. The implementation of a partner drug in ACTs is critical in the control of emerging artemisinin resistance. Even though artemisinin is highly effective in parasite clearance, it is labile in the human body. A partner drug is necessary for killing the remaining parasites when the pulses of artemisinin have ceased. A population of Plasmodium falciparum parasites in Cambodia and adjacent countries has become resistant to piperaquine. Increased copy number of the genes encoding the haemoglobinases Plasmepsin II and Plasmepsin III has been linked with piperaquine resistance by genome-wide association studies and in clinical trials, leading to the use of increased plasmepsin II/plasmepsin III copy number as a molecular marker for piperaquine resistance. Here we demonstrate that overexpression of plasmepsin II and plasmepsin III in the 3D7 genetic background failed to change the susceptibility of P. falciparum to artemisinin, chloroquine and piperaquine by both a standard dose-response analysis and a piperaquine survival assay. Whilst plasmepsin copy number polymorphism is currently implemented as a molecular surveillance resistance marker, further studies to discover the molecular basis of piperaquine resistance and potential epistatic interactions are needed.


Subject(s)
Antimalarials/pharmacology , Artesunate/pharmacology , Aspartic Acid Endopeptidases/genetics , Chloroquine/pharmacology , Plasmodium falciparum/drug effects , Protozoan Proteins/genetics , Quinolines/pharmacology , Cambodia , Drug Resistance , Gene Dosage , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Plasmodium falciparum/enzymology
4.
Sci Transl Med ; 9(387)2017 04 26.
Article in English | MEDLINE | ID: mdl-28446690

ABSTRACT

As part of the global effort toward malaria eradication, phenotypic whole-cell screening revealed the 2-aminopyridine class of small molecules as a good starting point to develop new antimalarial drugs. Stemming from this series, we found that the derivative, MMV390048, lacked cross-resistance with current drugs used to treat malaria. This compound was efficacious against all Plasmodium life cycle stages, apart from late hypnozoites in the liver. Efficacy was shown in the humanized Plasmodium falciparum mouse model, and modest reductions in mouse-to-mouse transmission were achieved in the Plasmodium berghei mouse model. Experiments in monkeys revealed the ability of MMV390048 to be used for full chemoprotection. Although MMV390048 was not able to eliminate liver hypnozoites, it delayed relapse in a Plasmodium cynomolgi monkey model. Both genomic and chemoproteomic studies identified a kinase of the Plasmodium parasite, phosphatidylinositol 4-kinase, as the molecular target of MMV390048. The ability of MMV390048 to block all life cycle stages of the malaria parasite suggests that this compound should be further developed and may contribute to malaria control and eradication as part of a single-dose combination treatment.


Subject(s)
1-Phosphatidylinositol 4-Kinase/antagonists & inhibitors , Aminopyridines/therapeutic use , Antimalarials/therapeutic use , Sulfones/therapeutic use , Aminopyridines/pharmacology , Animals , Antimalarials/pharmacology , Female , Malaria/drug therapy , Malaria/enzymology , Male , Mice , Mice, SCID , Parasitic Sensitivity Tests , Plasmodium/drug effects , Plasmodium/pathogenicity , Sulfones/pharmacology
5.
PLoS Med ; 13(10): e1002138, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27701420

ABSTRACT

BACKGROUND: Artemisinin resistance observed in Southeast Asia threatens the continued use of artemisinin-based combination therapy in endemic countries. Additionally, the diversity of chemical mode of action in the global portfolio of marketed antimalarials is extremely limited. Addressing the urgent need for the development of new antimalarials, a chemical class of potent antimalarial compounds with a novel mode of action was recently identified. Herein, the preclinical characterization of one of these compounds, ACT-451840, conducted in partnership with academic and industrial groups is presented. METHOD AND FINDINGS: The properties of ACT-451840 are described, including its spectrum of activities against multiple life cycle stages of the human malaria parasite Plasmodium falciparum (asexual and sexual) and Plasmodium vivax (asexual) as well as oral in vivo efficacies in two murine malaria models that permit infection with the human and the rodent parasites P. falciparum and Plasmodium berghei, respectively. In vitro, ACT-451840 showed a 50% inhibition concentration of 0.4 nM (standard deviation [SD]: ± 0.0 nM) against the drug-sensitive P. falciparum NF54 strain. The 90% effective doses in the in vivo efficacy models were 3.7 mg/kg against P. falciparum (95% confidence interval: 3.3-4.9 mg/kg) and 13 mg/kg against P. berghei (95% confidence interval: 11-16 mg/kg). ACT-451840 potently prevented male gamete formation from the gametocyte stage with a 50% inhibition concentration of 5.89 nM (SD: ± 1.80 nM) and dose-dependently blocked oocyst development in the mosquito with a 50% inhibitory concentration of 30 nM (range: 23-39). The compound's preclinical safety profile is presented and is in line with the published results of the first-in-man study in healthy male participants, in whom ACT-451840 was well tolerated. Pharmacokinetic/pharmacodynamic (PK/PD) modeling was applied using efficacy in the murine models (defined either as antimalarial activity or as survival) in relation to area under the concentration versus time curve (AUC), maximum observed plasma concentration (Cmax), and time above a threshold concentration. The determination of the dose-efficacy relationship of ACT-451840 under curative conditions in rodent malaria models allowed prediction of the human efficacious exposure. CONCLUSION: The dual activity of ACT-451840 against asexual and sexual stages of P. falciparum and the activity on P. vivax have the potential to meet the specific profile of a target compound that could replace the fast-acting artemisinin component and harbor additional gametocytocidal activity and, thereby, transmission-blocking properties. The fast parasite reduction ratio (PRR) and gametocytocidal effect of ACT-451840 were recently also confirmed in a clinical proof-of-concept (POC) study.


Subject(s)
Acrylamides/pharmacology , Antimalarials/pharmacology , Piperazines/pharmacology , Plasmodium falciparum/drug effects , Plasmodium vivax/drug effects , Acrylamides/pharmacokinetics , Animals , Antimalarials/pharmacokinetics , Artemisinins/pharmacology , Dose-Response Relationship, Drug , Female , Humans , Mice , Mice, Inbred NOD , Microbial Sensitivity Tests , Multidrug Resistance-Associated Proteins/metabolism , Piperazines/pharmacokinetics , Plasmodium berghei/drug effects
7.
Malar J ; 14: 441, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26542470

ABSTRACT

BACKGROUND: The emergence of Plasmodium falciparum resistance to artemisinins threatens to undermine the effectiveness of artemisinin-based combination anti-malarial therapy. Developing suitable drugs to replace artemisinins requires the identification of new compounds that display rapid parasite killing kinetics. However, no current methods fully meet the requirements to screen large compound libraries for candidates with such properties. This study describes the development and validation of an in vitro parasite viability fast assay for identifying rapidly parasiticidal anti-malarial drugs. METHODS: Parasite killing kinetics were determined by first culturing unlabelled erythrocytes with P. falciparum in the presence of anti-malarial drugs for 24 or 48 h. After removing the drug, samples were added to erythrocytes pre-labelled with intracellular dye to allow their subsequent identification. The ability of viable parasites to re-establish infection in labelled erythrocytes could then be detected by two-colour flow cytometry after tagging of parasite DNA. Thus, double-stained erythrocytes (with the pre-labelled intracellular dye and the parasite DNA dye) result only after establishment of new infections by surviving parasites. The capacity of the test anti-malarial drugs to eliminate viable parasites within 24 or 48 h could, therefore, be determined. RESULTS: The parasite viability fast assay could be completed within 48 h following drug treatment and distinguished between rapidly parasiticidal anti-malarial drugs versus those acting more slowly. The assay was validated against ten standard anti-malarial agents with known properties and results correlated well with established methods. An abbreviated assay, suitable for adaption to medium-high throughput screening, was validated and applied against a set of 20 compounds retrieved from the publically available Medicines for Malaria Venture 'Malaria Box'. CONCLUSION: The quantification of new infections to determine parasite viability offers important advantages over existing methods, and is amenable to medium-high throughput screening. In particular, the parasite viability fast assay allows discrimination of rapidly parasiticidal anti-malarial candidates.


Subject(s)
Antimalarials/pharmacology , Parasitic Sensitivity Tests/methods , Plasmodium falciparum/drug effects , DNA, Protozoan/genetics , DNA, Protozoan/metabolism , Erythrocytes/parasitology , Flow Cytometry , Malaria, Falciparum/drug therapy , Time Factors
8.
Nature ; 522(7556): 315-20, 2015 06 18.
Article in English | MEDLINE | ID: mdl-26085270

ABSTRACT

There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.


Subject(s)
Antimalarials/pharmacology , Gene Expression Regulation/drug effects , Malaria/parasitology , Plasmodium/drug effects , Plasmodium/metabolism , Protein Biosynthesis/drug effects , Quinolines/pharmacology , Animals , Antimalarials/administration & dosage , Antimalarials/adverse effects , Antimalarials/pharmacokinetics , Drug Discovery , Female , Life Cycle Stages/drug effects , Liver/drug effects , Liver/parasitology , Malaria/drug therapy , Male , Models, Molecular , Peptide Elongation Factor 2/antagonists & inhibitors , Peptide Elongation Factor 2/metabolism , Plasmodium/genetics , Plasmodium/growth & development , Plasmodium berghei/drug effects , Plasmodium berghei/physiology , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Plasmodium vivax/drug effects , Plasmodium vivax/metabolism , Quinolines/administration & dosage , Quinolines/chemistry , Quinolines/pharmacokinetics
9.
Nat Commun ; 6: 6715, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25823686

ABSTRACT

The widespread emergence of Plasmodium falciparum (Pf) strains resistant to frontline agents has fuelled the search for fast-acting agents with novel mechanism of action. Here, we report the discovery and optimization of novel antimalarial compounds, the triaminopyrimidines (TAPs), which emerged from a phenotypic screen against the blood stages of Pf. The clinical candidate (compound 12) is efficacious in a mouse model of Pf malaria with an ED99 <30 mg kg(-1) and displays good in vivo safety margins in guinea pigs and rats. With a predicted half-life of 36 h in humans, a single dose of 260 mg might be sufficient to maintain therapeutic blood concentration for 4-5 days. Whole-genome sequencing of resistant mutants implicates the vacuolar ATP synthase as a genetic determinant of resistance to TAPs. Our studies highlight the potential of TAPs for single-dose treatment of Pf malaria in combination with other agents in clinical development.


Subject(s)
Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Pyrimidines/pharmacology , Amines/pharmacology , Animals , Drug Evaluation, Preclinical , Drug Resistance, Microbial , Guinea Pigs , Half-Life , Rats
10.
J Med Chem ; 57(15): 6642-52, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25007124

ABSTRACT

From the phenotypic screening of the AstraZeneca corporate compound collection, N-aryl-2-aminobenzimidazoles have emerged as novel hits against the asexual blood stage of Plasmodium falciparum (Pf). Medicinal chemistry optimization of the potency against Pf and ADME properties resulted in the identification of 12 as a lead molecule. Compound 12 was efficacious in the P. berghei (Pb) model of malaria. This compound displayed an excellent pharmacokinetic profile with a long half-life (19 h) in rat blood. This profile led to an extended survival of animals for over 30 days following a dose of 50 mg/kg in the Pb malaria model. Compound 12 retains its potency against a panel of Pf isolates with known mechanisms of resistance. The fast killing observed in the in vitro parasite reduction ratio (PRR) assay coupled with the extended survival highlights the promise of this novel chemical class for the treatment of malaria.


Subject(s)
Aminopyridines/chemistry , Antimalarials/chemistry , Benzimidazoles/chemistry , Aminopyridines/pharmacokinetics , Aminopyridines/pharmacology , Animals , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Benzimidazoles/pharmacokinetics , Benzimidazoles/pharmacology , Hepatocytes/metabolism , Humans , Malaria/drug therapy , Malaria/mortality , Mice, SCID , Microsomes, Liver/metabolism , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Rats , Structure-Activity Relationship
11.
J Med Chem ; 57(13): 5702-13, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-24914738

ABSTRACT

Whole-cell high-throughput screening of the AstraZeneca compound library against the asexual blood stage of Plasmodium falciparum (Pf) led to the identification of amino imidazoles, a robust starting point for initiating a hit-to-lead medicinal chemistry effort. Structure-activity relationship studies followed by pharmacokinetics optimization resulted in the identification of 23 as an attractive lead with good oral bioavailability. Compound 23 was found to be efficacious (ED90 of 28.6 mg·kg(-1)) in the humanized P. falciparum mouse model of malaria (Pf/SCID model). Representative compounds displayed a moderate to fast killing profile that is comparable to that of chloroquine. This series demonstrates no cross-resistance against a panel of Pf strains with mutations to known antimalarial drugs, thereby suggesting a novel mechanism of action for this chemical class.


Subject(s)
Antimalarials/pharmacology , Benzimidazoles/therapeutic use , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Animals , Antimalarials/chemistry , Benzimidazoles/pharmacokinetics , Benzimidazoles/pharmacology , Biological Availability , Cell Line, Tumor , Cell Survival/drug effects , High-Throughput Screening Assays , Humans , Inhibitory Concentration 50 , Mice , Small Molecule Libraries , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...