Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 101(4-1): 042406, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32422743

ABSTRACT

This paper generalizes and extends previous work on using neural field theory to quantitatively analyze the two-dimensional (2D) spatiotemporal correlation properties of gamma-band (30-70 Hz) oscillations evoked by stimuli arriving at the primary visual cortex, and modulated by patchy connectivities that depend on orientation preference (OP). Correlation functions are derived analytically for general stimulus and measurement conditions. The theoretical results reproduce a range of published experimental results. These include (i) the existence of two-point oscillatory temporal cross correlations with zero time lag between neurons with similar OP; (ii) the influence of spatial separation of neurons on the strength of the correlations; and (iii) the effects of differing stimulus orientations. They go beyond prior work by incorporating experimentally observed patchy projection patterns to predict the 2D correlation structure including both OP and ocular dominance effects, thereby relaxing assumptions of translational invariance implicit in prior one-dimensional analysis.


Subject(s)
Gamma Rhythm , Visual Cortex/physiology , Models, Neurological , Neurons/cytology , Visual Cortex/cytology
2.
PLoS One ; 15(4): e0230510, 2020.
Article in English | MEDLINE | ID: mdl-32240175

ABSTRACT

The temporal and spectral characteristics of tonic-clonic seizures are investigated using a neural field model of the corticothalamic system in the presence of a temporally varying connection strength between the cerebral cortex and thalamus. Increasing connection strength drives the system into ∼ 10 Hz seizure oscillations once a threshold is passed and a subcritical Hopf bifurcation occurs. In this study, the spectral and temporal characteristics of tonic-clonic seizures are explored as functions of the relevant properties of physiological connection strengths, such as maximum strength, time above threshold, and the ramp rate at which the strength increases or decreases. Analysis shows that the seizure onset time decreases with the maximum connection strength and time above threshold, but increases with the ramp rate. Seizure duration and offset time increase with maximum connection strength, time above threshold, and rate of change. Spectral analysis reveals that the power of nonlinear harmonics and the duration of the oscillations increase as the maximum connection strength and the time above threshold increase. A secondary limit cycle at ∼ 18 Hz, termed a saddle-cycle, is also seen during seizure onset and becomes more prominent and robust with increasing ramp rate. If the time above the threshold is too small, the system does not reach the 10 Hz limit cycle, and only exhibits 18 Hz saddle-cycle oscillations. It is also seen that the time to reach the saturated large amplitude limit-cycle seizure oscillation from both the instability threshold and from the end of the saddle-cycle oscillations is inversely proportional to the square root of the ramp rate.


Subject(s)
Cerebral Cortex/physiology , Models, Neurological , Seizures/physiopathology , Thalamus/physiology , Humans
3.
Phys Rev E ; 100(2-1): 022407, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31574631

ABSTRACT

The dynamics of interictal events between absence seizures and their relationship to seizures themselves are investigated by employing a neural field model of the corticothalamic system. Interictal events are modeled as being due to transient parameter excursions beyond the seizure threshold, in the present case by sufficiently temporally varying the connection strength between the cerebral cortex and the thalamus. Increasing connection strength drives the system into ∼3-Hz seizure oscillations via a supercritical Hopf bifurcation once the linear instability threshold is passed. Depending on the time course of the excursion above threshold, different interictal activity event dynamics are seen in the time series of corticothalamic fields. These resemble experimental interictal time series observed via electroencephalography. It is found that the morphology of these events depends on the magnitude and duration of the excursion above threshold. For a large-amplitude excursion of short duration, events resemble interictal spikes, where one large spike is seen, followed by small damped oscillations. For a short excursion with long duration, events like observed interictal periodic sharp waves are seen. When both amplitude and duration above threshold are large, seizure oscillations are seen. Using these outcomes, proximity to seizure can be estimated and tracked.


Subject(s)
Models, Neurological , Seizures/pathology , Seizures/physiopathology , Brain/pathology , Brain/physiopathology , Electroencephalography , Neurons/pathology
4.
Phys Rev E ; 98(2-1): 022319, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30253627

ABSTRACT

The spatiotemporal spectrum of feedback-driven fluctuations of brain connectivity is investigated using nonlinear neural field theory of the corticothalamic system. Weakly nonlinear dynamics of neural feedbacks are expanded in terms of first order perturbations of neural activity relative to a fixed point. Susceptibilities are used to quantify the change in connectivity per unit change in presynaptic or postsynaptic activity caused by nonlinear feedbacks such as facilitation, depression, sensitization, potentiation, and the effects of discrete eigenmode structure are included for a spherical brain geometry. Spectral signatures such as resonances are identified that allow the presence of particular presynaptic and postsynaptic feedback effects to be inferred. These include additional resonances at high frequencies and shifts of existing spectral peaks, mostly visible in the lowest spatial modes of the response.

5.
Phys Rev E ; 96(5-1): 052310, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29347805

ABSTRACT

The modulation of neural quantities by presynaptic and postsynaptic activities via local feedback processes is investigated by incorporating nonlinear phenomena such as relative refractory period, synaptic enhancement, synaptic depression, and habituation. This is done by introducing susceptibilities, which quantify the response in either firing threshold or synaptic strength to unit change in either presynaptic or postsynaptic activity. Effects on the power spectra are then analyzed for a realistic corticothalamic model to determine the spectral signatures of various nonlinear processes and to what extent these are distinct. Depending on the feedback processes, there can be enhancements or reductions in low-frequency and/or alpha power, splitting of the alpha resonance, and/or appearance of new resonances at high frequencies. These features in the power spectra allow processes to be fully distinguished where they are unique, or partly distinguished if they are common to only a subset of feedbacks, and can potentially be used to constrain the types, strengths, and dynamics of feedbacks present.


Subject(s)
Cerebral Cortex/physiology , Feedback, Physiological , Models, Neurological , Neurons/physiology , Thalamus/physiology , Action Potentials , Alpha Rhythm/physiology , Animals , Feedback, Physiological/physiology , Neural Pathways/physiology , Nonlinear Dynamics , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...