Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36139605

ABSTRACT

Tumor molecular profiling upon disease progression enables investigations of the tumor evolution. Next-generation sequencing (NGS) of liquid biopsies constitutes a noninvasive readily available source of tumor molecular information. In this study, 124 plasma samples from advanced EGFR-positive NSCLC patients, treated with a first-line EGFR tyrosine kinase inhibitor (EGFR-TKI) were collected upon disease progression. The circulating cell-free DNA (cfDNA) was sequenced using the Oncomine Pan-Cancer Cell-Free Assay™. Excluding EGFR mutations, the most frequently mutated gene was TP53 (57.3%), followed by APC (11.3%), FGFR3 (7.3%), and KRAS (5.6%). Different molecular alterations were observed upon disease progression depending on the location of the original EGFR-sensitizing mutation. Specifically, the detection of the p.T790M mutation was significantly associated with the presence of exon 19 mutations in EGFR (Fisher p-value: 0.028). All KRAS activating mutations (n = 8) were detected in tumors with EGFR mutations in exons 18 and 21 (Fisher p-value < 0.001). Similarly, mutations in NRAS and HRAS were more frequently detected in samples from tumors harboring mutations in exons 18 or 21 (Fisher p-value: 0.050 and Fisher p-value: 0.099, respectively). In conclusion, our data suggest that the mechanisms underlying EGFR-TKI resistance could be dependent on the exon location of the original EGFR-sensitizing mutation.

2.
Clin Chem ; 68(5): 668-679, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35348673

ABSTRACT

BACKGROUND: ALK rearrangements are present in 5% of nonsmall cell lung cancer (NSCLC) tumors and identify patients who can benefit from ALK inhibitors. ALK fusions testing using liquid biopsies, although challenging, can expand the therapeutic options for ALK-positive NSCLC patients considerably. RNA inside extracellular vesicles (EVs) is protected from RNases and other environmental factors, constituting a promising source for noninvasive fusion transcript detection. METHODS: EVs from H3122 and H2228 cell lines, harboring EML4-ALK variant 1 (E13; A20) and variant 3 (E6a/b; A20), respectively, were successfully isolated by sequential centrifugation of cell culture supernatants. EVs were also isolated from plasma samples of 16 ALK-positive NSCLC patients collected before treatment initiation. RESULTS: Purified EVs from cell cultures were characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and flow cytometry. Western blot and confocal microscopy confirmed the expression of EV-specific markers as well as the expression of EML4-ALK-fusion proteins in EV fractions from H3122 and H2228 cell lines. In addition, RNA from EV fractions derived from cell culture was analyzed by digital PCR (dPCR) and ALK-fusion transcripts were clearly detected. Similarly, plasma-derived EVs were characterized by NTA, flow cytometry, and the ExoView platform, the last showing that EV-specific markers captured EV populations containing ALK-fusion protein. Finally, ALK fusions were identified in 50% (8/16) of plasma EV-enriched fractions by dPCR, confirming the presence of fusion transcripts in EV fractions. CONCLUSIONS: ALK-fusion transcripts can be detected in EV-enriched fractions. These results set the stage for the development of EV-based noninvasive ALK testing.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Extracellular Vesicles , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line , Extracellular Vesicles/metabolism , Humans , Lung Neoplasms/pathology , Oncogene Proteins, Fusion/genetics , RNA , Receptor Protein-Tyrosine Kinases/genetics
3.
Mol Oncol ; 15(9): 2363-2376, 2021 09.
Article in English | MEDLINE | ID: mdl-34058070

ABSTRACT

Despite impressive and durable responses, nonsmall cell lung cancer (NSCLC) patients treated with anaplastic lymphoma kinase (ALK) inhibitors (ALK-Is) ultimately progress due to development of resistance. Here, we have evaluated the clinical utility of circulating tumor DNA (ctDNA) profiling by next-generation sequencing (NGS) upon disease progression. We collected 26 plasma and two cerebrospinal fluid samples from 24 advanced ALK-positive NSCLC patients at disease progression to an ALK-I. These samples were analyzed by NGS and digital PCR. A tool to retrieve variants at the ALK locus was developed (VALK tool). We identified at least one resistance mutation in the ALK locus in ten (38.5%) plasma samples; the G1269A and G1202R mutations were the most prevalent among patients progressing to first- and second-generation ALK-Is, respectively. Overall, 61 somatic mutations were detected in 14 genes: TP53, ALK, PIK3CA, SMAD4, MAP2K1 (MEK1), FGFR2, FGFR3, BRAF, EGFR, IDH2, MYC, MET, CCND3, and CCND1. Specifically, a deletion in exon 19 in EGFR, a non-V600 BRAF mutation (G466V), and the F129L mutation in MAP2K1 were identified in four patients who showed no objective survival benefit from ALK-Is. Potential ALK-I-resistance mutations were also found in PIK3CA and IDH2. Finally, a c-MYC gain, along with a loss of CCND1 and FGFR3, was detected in a patient progressing on a first-line treatment with crizotinib. We conclude that NGS analysis of liquid biopsies upon disease progression identified different putative ALK-I-resistance mutations in most cases and could be a valuable approach for therapy decision making.


Subject(s)
Anaplastic Lymphoma Kinase/drug effects , Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Resistance, Neoplasm/genetics , High-Throughput Nucleotide Sequencing/methods , Lung Neoplasms/drug therapy , Precision Medicine , Protein Kinase Inhibitors/therapeutic use , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/cerebrospinal fluid , Circulating Tumor DNA/blood , Humans , Lung Neoplasms/blood , Lung Neoplasms/cerebrospinal fluid , Mutation , Protein Kinase Inhibitors/pharmacology
4.
Transl Lung Cancer Res ; 9(3): 532-540, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32676317

ABSTRACT

BACKGROUND: Several clinical trials have demonstrated the efficacy and safety of osimertinib in advanced non-small-cell lung cancer (NSCLC). However, there is significant unexplained variability in treatment outcome. METHODS: Observational prospective cohort of 22 pre-treated patients with stage IV NSCLC harboring the epidermal growth factor receptor (EGFR) p.T790M resistance mutation and who were treated with osimertinib. Three hundred and twenty-six serial plasma samples were collected and analyzed by digital PCR (dPCR) and next-generation sequencing (NGS). RESULTS: The median progression-free survival (PFS), since the start of osimertinib, was 8.9 [interquartile range (IQR): 4.6-18.0] months. The median treatment durations of sequential gefitinib + osimertinib, afatinib + osimertinib and erlotinib + osimertinib treatments were 30.1, 24.6 and 21.1 months, respectively. The p.T790M mutation was detected in 19 (86%) pre-treatment blood samples. Undetectable levels of the original EGFR-sensitizing mutation after 3 months of treatment were associated with superior PFS (HR: 0.2, 95% CI: 0.05-0.7). Likewise, re-emergence of the original EGFR mutation, alone or together with the p.T790M mutation was significantly associated with shorter PFS (HR: 8.8, 95% CI: 1.1-70.7 and HR: 5.9, 95% CI: 1.2-27.9, respectively). Blood-based monitoring revealed three molecular patterns upon progression to osimertinib: sensitizing+/T790M+/C797S+, sensitizing+/T790M+/C797S-, and sensitizing+/T790M-/C797S-. Median time to progression in patients showing the triplet pattern (sensitizing+/T790M+/C797S+) was 12.27 months compared with 4.87 months in patients in whom only the original EGFR sensitizing was detected, and 2.17 months in patients showing the duplet pattern (sensitizing+/T790M+). Finally, we found that mutations in exon 545 of the PIK3CA gene were the most frequent alteration detected upon disease progression in patients without acquired EGFR-resistance mutations. CONCLUSIONS: Different molecular patterns identified by plasma genotyping may be of prognostic significance, suggesting that the use of liquid biopsy is a valuable approach for tumor monitoring.

SELECTION OF CITATIONS
SEARCH DETAIL
...