Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
PLoS One ; 19(1): e0296523, 2024.
Article in English | MEDLINE | ID: mdl-38166036

ABSTRACT

PURPOSE: Ketogenic diets may positively influence cancer through pleiotropic mechanisms, but only a few small and short-term studies have addressed feasibility and efficacy in cancer patients. The primary goals of this study were to evaluate the feasibility and the sustained metabolic effects of a personalized well-formulated ketogenic diet (WFKD) designed to achieve consistent blood beta-hydroxybutyrate (ßHB) >0.5 mM in women diagnosed with stage IV metastatic breast cancer (MBC) undergoing chemotherapy. METHODS: Women (n = 20) were enrolled in a six month, two-phase, single-arm WFKD intervention (NCT03535701). Phase I was a highly-supervised, ad libitum, personalized WFKD, where women were provided with ketogenic-appropriate food daily for three months. Phase II transitioned women to a self-administered WFKD with ongoing coaching for an additional three months. Fasting capillary ßHB and glucose were collected daily; weight, body composition, plasma insulin, and insulin resistance were collected at baseline, three and six months. RESULTS: Capillary ßHB indicated women achieved nutritional ketosis (Phase I mean: 0.8 mM (n = 15); Phase II mean: 0.7 mM (n = 9)). Body weight decreased 10% after three months, primarily from body fat. Fasting plasma glucose, plasma insulin, and insulin resistance also decreased significantly after three months (p < 0.01), an effect that persisted at six months. CONCLUSIONS: Women diagnosed with MBC undergoing chemotherapy can safely achieve and maintain nutritional ketosis, while improving body composition and insulin resistance, out to six months.


Subject(s)
Breast Neoplasms , Diet, Ketogenic , Insulin Resistance , Insulins , Ketosis , Humans , Female , Breast Neoplasms/drug therapy , Feasibility Studies , 3-Hydroxybutyric Acid
2.
Exp Physiol ; 108(5): 715-727, 2023 05.
Article in English | MEDLINE | ID: mdl-36915239

ABSTRACT

NEW FINDINGS: What is the central question of the study? Can a novel, energy-dense and lightweight ketogenic bar (1000 kcal) consumed 3 h before exercise modulate steady-state incline rucksack march ('ruck') performance compared to isocaloric carbohydrate bars in recreationally active, college-aged men? What is the main finding and its importance? Acute ingestion of either nutritional bar sustained ∼1 h of exhaustive rucking with a 30% of body weight rucksack. This proof-of-concept study is the first to demonstrate that carbohydrate bars and lipid bars are equally feasible for preserving ruck performance. Novel ketogenic nutrition bars may have military-relevant applications to lessen carry load without compromising exercise capacity. ABSTRACT: Rucksack marches ('rucks') are strenuous, military-relevant exercises that may benefit from pre-event fuelling. The purpose of this investigation was to explore whether acute ingestion of carbohydrate- or lipid-based nutritional bars before rucking can elicit unique advantages that augment exercise performance. Recreationally active and healthy males (n = 29) were randomized and counterbalanced to consume 1000 kcal derived from a novel, energy-dense (percentage energy from carbohydrate/fat/protein: 5/83/12) ketogenic bar (KB), or isocaloric high-carbohydrate bars (CB; 61/23/16) 3 h before a time-to-exhaustion (TTE) ruck. Conditions were separated by a 1-week washout. The rucksack weight was standardized to 30% of bodyweight. Steady-state treadmill pace was set at 3.2 km/h (0.89 m/s) and 14% grade. TTE was the primary outcome; respiratory exchange ratio (RER), capillary ketones (R-ß-hydroxybutyrate), glucose and lactate, plus subjective thirst/hunger were the secondary outcomes. Mean TTE was similar between conditions (KB: 55 ± 25 vs. CB: 54 ± 22 min; P = 0.687). The RER and substrate oxidation rates revealed greater fat and carbohydrate oxidation after the KB and CB, respectively (all P < 0.0001). Capillary R-ßHB increased modestly after the KB ingestion (P < 0.0001). Neither bar influenced glycaemia. Lactate increased during the ruck independent of the condition (P < 0.0001). Thirst/fullness perceptions changed independent of the nutritional bar consumed. A novel KB nutritional bar produced equivalent TTE ruck results to the isocaloric CBs. The KB's energy density relative to CB (6.6 vs. 3.8 kcal/g) may provide a lightweight (-42% weight), pre-event fuelling alternative that does not compromise ruck physical performance.


Subject(s)
Carbohydrates , Exercise , Male , Humans , Young Adult , Oxidation-Reduction , 3-Hydroxybutyric Acid , Lactates , Dietary Carbohydrates/pharmacology
3.
J Am Nutr Assoc ; 42(2): 169-177, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35512774

ABSTRACT

BACKGROUND: Ketosis has been reported to benefit healthspan and resilience, which has driven considerable interest in development of exogenous ketones to induce ketosis without dietary changes. Bis hexanoyl (R)-1,3-butanediol (BH-BD) is a novel ketone di-ester that can be used as a food ingredient that increases hepatic ketogenesis and blood beta-hydroxybutyrate (BHB) concentrations. METHODS: Here, we provide the first description of blood ketone and metabolite kinetics for up to five hours after consumption of a beverage containing BH-BD by healthy adults (n = 8) at rest in three randomized, cross-over conditions (25 g + Meal (FEDH); 12.5 g + Meal (FEDL) ; 25 g + Fasted (FASTH)). RESULTS: Consumption of BH-BD effectively raised plasma r-BHB concentrations to 0.8-1.7 mM in all conditions, and both peak r-BHB concentration and r-BHB area under the curve were greater with 25 g versus 12.5 g of BH-BD. Urinary excretion of r-BHB was <1 g. Plasma concentration of the non-physiological isoform s-BHB was increased to 20-60 µM in all conditions. BH-BD consumption decreased plasma glucose and free fatty acid concentrations; insulin was increased when BH-BD was consumed with a meal. CONCLUSIONS: These results demonstrate that consumption of BH-BD effectively induces exogenous ketosis in healthy adults at rest.


Subject(s)
Esters , Ketosis , Adult , Humans , 3-Hydroxybutyric Acid , Hydroxybutyrates , Ketone Bodies , Ketones
4.
Front Neurosci ; 16: 971144, 2022.
Article in English | MEDLINE | ID: mdl-36248655

ABSTRACT

Background: Ketogenic diets are a commonly used weight loss method, but little is known how variations in sodium content and ketones influence cognition and mood during the early keto-adaptation period. Objectives: To investigate the effects of an exogenous ketone salt (KS) as part of a hypocaloric KD on mood and cognitive outcomes in overweight and obese adults. A secondary objective was to evaluate changes in biochemical markers associated with inflammatory and cognitive responses. Materials and methods: Adults who were overweight or obese participated in a 6-week controlled-feeding intervention comparing hypocaloric diets (∼75% of energy expenditure). KD groups received twice daily ketone salt (KD + KS; n = 12) or a flavor-matched placebo, free of minerals (KD + PL; n = 13). A separate group of age and BMI matched adults were later assigned to an isoenergetic low-fat diet (LFD; n = 12) as comparison to KD. Mood was assessed by shortened Profile of Mood States and Visual Analog Mood Scale surveys. Cognitive function was determined by the Automated Neuropsychological Assessment Metrics mental test battery. Results: Both KD groups achieved nutritional ketosis. Fasting serum glucose decreased in both KD groups, whereas glucose was unaffected in the LFD. Insulin decreased at week 2 and remained lower in all groups. At week 2, depression scores in the KD + PL group were higher compared to KD + KS. Performance in the math processing and go/no-go cognitive tests were lower for KD + PL and LFD participants, respectively, compared to KD + KS. Serum leptin levels decreased for all groups throughout the study but were higher for KD + KS group at week 6. Serum TNF-α steadily increased for LFD participants, reaching significance at week 6. Conclusion: During a short-term hypocaloric diet, no indication of a consistent decline in mood or cognitive function were seen in participants following either KD, despite KD + PL being relatively low in sodium. WK2 scores of "anger" and "depression" were higher in the LFD and KD + PL groups, suggesting that KS may attenuate negative mood parameters during the early intervention stages.

5.
Brain Sci ; 12(9)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36138878

ABSTRACT

Brain-Derived Neurotropic Factor (BDNF) expression is decreased in conditions associated with cognitive decline as well as metabolic diseases. One potential strategy to improve metabolic health and elevate BDNF is by increasing circulating ketones. Beta-Hydroxybutyrate (BHB) stimulates BDNF expression, but the association of circulating BHB and plasma BDNF in humans has not been widely studied. Here, we present results from three studies that evaluated how various methods of inducing ketosis influenced plasma BDNF in humans. Study 1 determined BDNF responses to a single bout of high-intensity cycling after ingestion of a dose of ketone salts in a group of healthy adults who were habitually consuming either a mixed diet or a ketogenic diet. Study 2 compared how a ketogenic diet versus a mixed diet impacts BDNF levels during a 12-week resistance training program in healthy adults. Study 3 examined the effects of a controlled hypocaloric ketogenic diet, with and without daily use of a ketone-salt, on BDNF levels in overweight/obese adults. We found that (1) fasting plasma BDNF concentrations were lower in keto-adapted versus non keto-adapted individuals, (2) intense cycling exercise was a strong stimulus to rapidly increase plasma BDNF independent of ketosis, and (3) clinically significant weight loss was a strong stimulus to decrease fasting plasma BDNF independent of diet composition or level of ketosis. These results highlight the plasticity of plasma BDNF in response to lifestyle factors but does not support a strong association with temporally matched BHB concentrations.

6.
Nutrients ; 13(6)2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34198888

ABSTRACT

BACKGROUND: Foods rich in saturated fatty acids (SFAs) have been discouraged by virtue of their cholesterol-raising potential, but this effect is modulated by the food source and background level of carbohydrate. OBJECTIVE: We aimed to compare the consumption of palm stearin (PS) versus butter on circulating cholesterol responses in the setting of both a low-carbohydrate/high-fat (LC/HF) and high-carbohydrate/low-fat (HC/LF) diet in healthy subjects. We also explored effects on plasma lipoprotein particle distribution and fatty acid composition. METHODS: We performed a randomized, controlled-feeding, cross-over study that compared a PS- versus a Butter-based diet in a group of normocholesterolemic, non-obese adults. A controlled canola oil-based 'Run-In' diet preceded the experimental PS and Butter diets. All diets were eucaloric, provided for 3-weeks, and had the same macronutrient distribution but varied in primary fat source (40% of the total fat). The same Run-In and cross-over experiments were done in two separate groups who self-selected to either a LC/HF (n = 12) or a HC/LF (n = 12) diet track. The primary outcomes were low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein (HDL)-C, triglycerides, and LDL particle distribution. RESULTS: Compared to PS, Butter resulted in higher LDL-C in both the LC/HF (13.4%, p = 0.003) and HC/LF (10.8%, p = 0.002) groups, which was primarily attributed to large LDL I and LDL IIa particles. There were no differences between PS and Butter in HDL-C, triglycerides, or small LDL particles. Oxidized LDL was lower after PS than Butter in LC/HF (p = 0.011), but not the HC/LF group. CONCLUSIONS: These results demonstrate that Butter raises LDL-C relative to PS in healthy normocholesterolemic adults regardless of background variations in carbohydrate and fat, an effect primarily attributed to larger cholesterol-rich LDL particles.


Subject(s)
Butter , Cholesterol/blood , Diet/methods , Dietary Carbohydrates/administration & dosage , Dietary Fats/administration & dosage , Palm Oil/administration & dosage , Adult , Aged , Cross-Over Studies , Diet/adverse effects , Diet, Carbohydrate Loading/adverse effects , Diet, Carbohydrate Loading/methods , Diet, Carbohydrate-Restricted/adverse effects , Diet, Carbohydrate-Restricted/methods , Diet, Fat-Restricted/adverse effects , Diet, Fat-Restricted/methods , Diet, High-Fat/adverse effects , Diet, High-Fat/methods , Female , Healthy Volunteers , Humans , Lipids/blood , Male , Middle Aged , Palm Oil/chemistry , Young Adult
7.
Front Nutr ; 8: 618520, 2021.
Article in English | MEDLINE | ID: mdl-33869263

ABSTRACT

Background: Ketogenic diets (KDs) that elevate beta-hydroxybutyrate (BHB) promote weight and fat loss. Exogenous ketones, such as ketone salts (KS), also elevate BHB concentrations with the potential to protect against muscle loss during caloric restriction. Whether augmenting ketosis with KS impacts body composition responses to a well-formulated KD remains unknown. Purpose: To explore the effects of energy-matched, hypocaloric KD feeding (<50 g carbohydrates/day; 1.5 g/kg/day protein), with and without the inclusion of KS, on weight loss and body composition responses. Methods: Overweight and obese adults were provided a precisely defined hypocaloric KD (~75% of energy expenditure) for 6 weeks. In a double-blind manner, subjects were randomly assigned to receive ~24 g/day of a racemic BHB-salt (KD + KS; n = 12) or placebo (KD + PL; n = 13). A matched comparison group (n = 12) was separately assigned to an isoenergetic/isonitrogenous low-fat diet (LFD). Body composition parameters were assessed by dual x-ray absorptiometry and magnetic resonance imaging. Results: The KD induced nutritional ketosis (>1.0 mM capillary BHB) throughout the study (p < 0.001), with higher fasting concentrations observed in KD + KS than KD + PL for the first 2 weeks (p < 0.05). There were decreases in body mass, whole body fat and lean mass, mid-thigh muscle cross-sectional area, and both visceral and subcutaneous adipose tissues (p < 0.001), but no group differences between the two KDs or with the LFD. Urine nitrogen excretion was significantly higher in KD + PL than LFD (p < 0.01) and trended higher in KD + PL compared to KD + KS (p = 0.076), whereas the nitrogen excretion during KD + KS was similar to LFD (p > 0.05). Conclusion: Energy-matched hypocaloric ketogenic diets favorably affected body composition but were not further impacted by administration of an exogenous BHB-salt that augmented ketosis. The trend for less nitrogen loss with the BHB-salt, if manifested over a longer period of time, may contribute to preserved lean mass.

8.
Nutrients ; 13(3)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33802651

ABSTRACT

Ketogenic diets (KDs) often contain high levels of saturated fat, which may increase liver fat, but the lower carbohydrate intake may have the opposite effect. Using a controlled feeding design, we compared liver fat responses to a hypocaloric KD with a placebo (PL) versus an energy-matched low-fat diet (LFD) in overweight adults. We also examined the added effect of a ketone supplement (KS). Overweight adults were randomized to a 6-week KD (KD + PL) or a KD with KS (KD + KS); an LFD group was recruited separately. All diets were estimated to provide 75% of energy expenditure. Weight loss was similar between groups (p > 0.05). Liver fat assessed by magnetic resonance imaging decreased after 6 week (p = 0.004) with no group differences (p > 0.05). A subset with nonalcoholic fatty liver disease (NAFLD) (liver fat > 5%, n = 12) showed a greater reduction in liver fat, but no group differences. In KD participants with NAFLD, 92% of the variability in change in liver fat was explained by baseline liver fat (p < 0.001). A short-term hypocaloric KD high in saturated fat does not adversely impact liver health and is not impacted by exogenous ketones. Hypocaloric low-fat and KDs can both be used in the short-term to significantly reduce liver fat in individuals with NAFLD.


Subject(s)
Diet, Fat-Restricted , Diet, Ketogenic , Dietary Supplements , Fats/analysis , Ketones/therapeutic use , Liver/chemistry , Overweight/diet therapy , Adult , Diet, Fat-Restricted/methods , Diet, Ketogenic/methods , Fats/metabolism , Female , Humans , Liver/diagnostic imaging , Liver/metabolism , Magnetic Resonance Imaging , Male , Overweight/metabolism
9.
J Am Coll Nutr ; 39(4): 290-300, 2020.
Article in English | MEDLINE | ID: mdl-32330107

ABSTRACT

Background: Acute ingestion of ketone supplements alters metabolism and potentially exercise performance. No studies to date have evaluated the impact of co-ingestion of ketone salts with caffeine and amino acids on high intensity exercise performance, and no data exists in Keto-Adapted individuals.Methods: We tested the performance and metabolic effects of a pre-workout supplement containing beta-hydroxybutyrate (BHB) salts, caffeine, and amino acids (KCA) in recreationally-active adults habitually consuming a mixed diet (Keto-Naïve; n = 12) or a ketogenic diet (Keto-Adapted; n = 12). In a randomized and balanced manner, subjects consumed either the KCA consisting of ∼7 g BHB (72% R-BHB and 28% S-BHB) with ∼100 mg of caffeine, and amino acids (leucine and taurine) or Water (control condition) 15 minutes prior to performing a staged cycle ergometer time to exhaustion test followed immediately by a 30 second Wingate test.Results: Circulating total BHB concentrations increased rapidly after KCA ingestion in KN (154 to 732 µM) and KA (848 to 1,973 µM) subjects and stayed elevated throughout recovery in both groups. Plasma S-BHB increased >20-fold 15 minutes after KCA ingestion in both groups and remained elevated throughout recovery. Compared to Water, KCA ingestion increased time to exhaustion 8.3% in Keto-Naïve and 9.8% in Keto-Adapted subjects (P < 0.001). There was no difference in power output during the Wingate test between trials. Peak lactate immediately after exercise was higher after KCA (∼14.9 vs 12.7 mM).Conclusion: These results indicate that pre-exercise ingestion of a moderate dose of R- and S-BHB salts combined with caffeine, leucine and taurine improves high-intensity exercise performance to a similar extent in both Keto-Adapted and Keto-Naïve individuals.


Subject(s)
3-Hydroxybutyric Acid/administration & dosage , Amino Acids/administration & dosage , Bicycling/physiology , Caffeine/administration & dosage , Dietary Supplements , Sports Nutritional Physiological Phenomena , 3-Hydroxybutyric Acid/blood , Adaptation, Physiological , Adolescent , Adult , Cross-Over Studies , Diet, Ketogenic , Eating/physiology , Exercise Test , Female , Humans , Lactic Acid/blood , Male , Middle Aged , Physical Endurance/drug effects , Salts/pharmacology , Young Adult
10.
JCI Insight ; 4(12)2019 06 20.
Article in English | MEDLINE | ID: mdl-31217353

ABSTRACT

BACKGROUNDMetabolic syndrome (MetS) is highly correlated with obesity and cardiovascular risk, but the importance of dietary carbohydrate independent of weight loss in MetS treatment remains controversial. Here, we test the theory that dietary carbohydrate intolerance (i.e., the inability to process carbohydrate in a healthy manner) rather than obesity per se is a fundamental feature of MetS.METHODSIndividuals who were obese with a diagnosis of MetS were fed three 4-week weight-maintenance diets that were low, moderate, and high in carbohydrate. Protein was constant and fat was exchanged isocalorically for carbohydrate across all diets.RESULTSDespite maintaining body mass, low-carbohydrate (LC) intake enhanced fat oxidation and was more effective in reversing MetS, especially high triglycerides, low HDL-C, and the small LDL subclass phenotype. Carbohydrate restriction also improved abnormal fatty acid composition, an emerging MetS feature. Despite containing 2.5 times more saturated fat than the high-carbohydrate diet, an LC diet decreased plasma total saturated fat and palmitoleate and increased arachidonate.CONCLUSIONConsistent with the perspective that MetS is a pathologic state that manifests as dietary carbohydrate intolerance, these results show that compared with eucaloric high-carbohydrate intake, LC/high-fat diets benefit MetS independent of whole-body or fat mass.TRIAL REGISTRATIONClinicalTrials.gov Identifier: NCT02918422.FUNDINGDairy Management Inc. and the Dutch Dairy Association.


Subject(s)
Dietary Carbohydrates/metabolism , Metabolic Syndrome/metabolism , Obesity/metabolism , Weight Loss , 8,11,14-Eicosatrienoic Acid/blood , Adult , Aged , Arachidonic Acid/blood , Cholesterol, LDL/metabolism , Cross-Over Studies , Diet , Female , Humans , Male , Middle Aged
11.
Mil Med ; 184(9-10): e538-e547, 2019 10 01.
Article in English | MEDLINE | ID: mdl-30877806

ABSTRACT

INTRODUCTION: Ketogenic diets (KDs) that elevate ketones into a range referred to as nutritional ketosis represent a possible nutrition approach to address the emerging physical readiness and obesity challenge in the military. An emerging body of evidence demonstrates broad-spectrum health benefits attributed to being in nutritional ketosis, but no studies have specifically explored the use of a KD in a military population using daily ketone monitoring to personalize the diet prescription. MATERIALS AND METHODS: To evaluate the feasibility, metabolic, and performance responses of an extended duration KD, healthy adults (n = 29) from various military branches participated in a supervised 12-wk exercise training program. Fifteen participants self-selected to an ad libitum KD guided by daily measures of capillary blood ketones and 14 continued their normal mixed diet (MD). A battery of tests were performed before and after the intervention to assess changes in body mass, body composition, visceral fat, liver fat, insulin sensitivity, resting energy metabolism, and physical performance. RESULTS: All KD subjects were in nutritional ketosis during the intervention as assessed by daily capillary beta-hydroxybutyrate (ßHB) (mean ßHB 1.2 mM reported 97% of all days) and showed higher rates of fat oxidation indicative of keto-adaptation. Despite no instruction regarding caloric intake, the KD group lost 7.7 kg body mass (range -3.5 to -13.6 kg), 5.1% whole-body percent fat (range -0.5 to -9.6%), 43.7% visceral fat (range 3.0 to -66.3%) (all p < 0.001), and had a 48% improvement in insulin sensitivity; there were no changes in the MD group. Adaptations in aerobic capacity, maximal strength, power, and military-specific obstacle course were similar between groups (p > 0.05). CONCLUSIONS: US military personnel demonstrated high adherence to a KD and showed remarkable weight loss and improvements in body composition, including loss of visceral fat, without compromising physical performance adaptations to exercise training. Implementation of a KD represents a credible strategy to enhance overall health and readiness of military service members who could benefit from weight loss and improved body composition.


Subject(s)
Diet, Ketogenic/standards , Military Personnel/statistics & numerical data , Physical Conditioning, Human/physiology , 3-Hydroxybutyric Acid/analysis , 3-Hydroxybutyric Acid/blood , Adipose Tissue/physiology , Adult , Body Composition/physiology , Diet, Ketogenic/methods , Diet, Ketogenic/statistics & numerical data , Female , Humans , Male , Nutritional Status , Ohio , Physical Conditioning, Human/methods , Physical Conditioning, Human/statistics & numerical data , Physical Fitness/physiology , Prospective Studies , Weight Loss/physiology
12.
Tomography ; 5(4): 358-366, 2019 12.
Article in English | MEDLINE | ID: mdl-31893234

ABSTRACT

Excess visceral adipose tissue (VAT) and VAT volume relative to subcutaneous adipose tissue (SAT) are associated with elevated health risks. This study compares fat measurements by dual-energy X-ray absorptiometry (DXA) and magnetic resonance imaging (MRI). In total, 21 control subjects (Control) and 16 individuals with metabolic syndrome (MetSyn) were scanned by DXA and MRI. The region measured by MRI was matched to the android region defined by DXA, and MRI reproducibility was also evaluated. In addition, liver fat fraction was quantified via MRI and whole-body fat by DXA. VAT measurements are interchangeable between DXA and MRI in the Control (R = 0.946), MetSyn (R = 0.968), and combined cohort (R = 0.983). VAT/SAT ratio did not differ in the Control group (P = .10), but VAT/SAT ratio measured by DXA was significantly higher in the MetSyn group (P < .01) and the combined (P = .03) cohort. Intraobserver (ICC = 0.998) and interobserver (ICC = 0.977) reproducibility of MRI VAT measurements was excellent. Liver fat fraction by MRI was higher (P = .001) in MetSyn (12.4% ± 7.6%) than in controls (2.6% ± 2.2%), as was whole-body fat percentage by DXA (P = .001) between the MetSyn (42.0% ± 8.1%) and Control groups (26.7% ± 6.9%). DXA and MRI VAT are interchangeable when measured over an anatomically matched region of the abdomen, while SAT and VAT/SAT ratio differ between the 2 modalities.


Subject(s)
Absorptiometry, Photon , Intra-Abdominal Fat/diagnostic imaging , Magnetic Resonance Imaging , Female , Humans , Male , Metabolic Syndrome/diagnostic imaging , Subcutaneous Fat/diagnostic imaging
13.
J Nutr Biochem ; 41: 34-41, 2017 03.
Article in English | MEDLINE | ID: mdl-28038359

ABSTRACT

NFκB-mediated inflammation contributes to liver injury during nonalcoholic steatohepatitis (NASH). We hypothesized that antiinflammatory activities of green tea extract (GTE) during NASH would lower tumor necrosis factor receptor-1 (TNFR1)- and Toll-like receptor-4 (TLR4)-mediated NFκB activation. Male C57BL6/J mice (6 weeks old) were fed a low-fat (LF) or high-fat (HF) diet for 12 weeks to induce NASH. They were then randomized to continue on these diets supplemented with 0 or 2% GTE (n=10/group) for an additional 8 weeks prior to evaluating NASH, NFκB inflammation and TNFR1 and TLR4 receptor complexes and their respective ligands, TNFα and endotoxin. HF feeding increased (P<.05) serum alanine aminotransferase (ALT) activity and histological evidence of NASH compared with LF controls. HF-mediated increases in NFκB p65 phosphorylation were also accompanied by increased serum TNFα and endotoxin concentrations, mRNA expression of hepatic TNFR1 and TLR4 and MyD88 protein levels. GTE in LF mice had no effect (P>.05) on liver histology or inflammatory responses. However, GTE in HF mice decreased biochemical and histological parameters of NASH and lowered hepatic p65 phosphorylation in association with decreased serum TNFα, mRNA expression of TNFR1 and TLR4 and MyD88 protein. GTE in HF-fed mice also lowered serum endotoxin and up-regulated mRNA expression of duodenal occludin and zonula occluden-1 and ileal occludin and claudin-1 that were otherwise lowered in expression by HF feeding. These data suggest that dietary GTE treatment reduces hepatic inflammation in NASH by decreasing proinflammatory signaling through TNFR1 and TLR4 that otherwise increases NFκB activation and liver injury.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Camellia sinensis/chemistry , Dietary Supplements , Non-alcoholic Fatty Liver Disease/diet therapy , Plant Extracts/therapeutic use , Receptors, Tumor Necrosis Factor, Type I/antagonists & inhibitors , Toll-Like Receptor 4/antagonists & inhibitors , Animals , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Diet, High-Fat/adverse effects , Food Handling , Gene Expression Regulation , Ligands , Liver/immunology , Liver/metabolism , Male , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/metabolism , Oxidation-Reduction , Phosphorylation , Plant Extracts/adverse effects , Plant Leaves/chemistry , Protein Processing, Post-Translational , Random Allocation , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Transcription Factor RelA/antagonists & inhibitors , Transcription Factor RelA/metabolism
14.
Food Funct ; 7(9): 3843-53, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27494176

ABSTRACT

Postprandial hyperglycemia (PPH) increases cardiovascular disease risk regardless of glucose intolerance by transiently impairing vascular endothelial function (VEF) by limiting nitric oxide bioavailability in an oxidative stress-dependent manner. Preclinical studies show that green tea catechins attenuate PPH by inhibiting starch digestion. We hypothesized that a starch-based confection containing catechin-rich green tea extract (GTE) would limit PPH-mediated impairments in VEF in normoglycemic adults. We formulated a unique GTE confection and then conducted a double-blind, randomized, controlled, crossover study in healthy men (n = 15; 25.3 ± 1.0 years; 22.4 ± 1.8 kg m(-2)) in which they ingested starch confections (50 g carbohydrate) formulated with or without GTE (1 g) prior to evaluating sensory characteristics of confections and plasma glucose, biomarkers of lipid peroxidation and nitric oxide homeostasis, and brachial artery flow-mediated dilation (FMD) at 30 min intervals for 3 h. Sensory evaluation of confections indicated acceptable consumer appeal and an inability to distinguish between confections regardless of GTE. Plasma catechins concentrations increased following ingestion of the GTE confection. However, plasma glucose peaked at 60 min (P < 0.05) following confection ingestion and was unaffected throughout the postprandial period by the GTE confection (P > 0.05). FMD was significantly decreased only at 60 min regardless of confections containing GTE. Also at 60 min, both confections similarly increased plasma malondialdehyde while decreasing arginine and increasing asymmetric dimethylarginine/arginine. The successfully formulated GTE-containing confection effectively delivered catechins, but without mitigating PPH-mediated impairments in VEF in association with oxidative stress that likely limits nitric oxide bioavailability.


Subject(s)
Candy , Catechin/administration & dosage , Catechin/blood , Tea/chemistry , Adult , Arginine/blood , Blood Glucose/analysis , Brachial Artery/physiology , Candy/analysis , Consumer Behavior , Cross-Over Studies , Diet , Dietary Carbohydrates/administration & dosage , Double-Blind Method , Homeostasis , Humans , Lipid Peroxidation , Male , Malondialdehyde/blood , Nitric Oxide/metabolism , Sensation , Starch , Vasodilation/drug effects
15.
Mol Nutr Food Res ; 60(4): 858-70, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26679056

ABSTRACT

SCOPE: Green tea extract (GTE) reduces liver steatosis and inflammation during nonalcoholic steatohepatitis (NASH). We hypothesized GTE would mitigate NASH in a nuclear factor erythroid-2-related-factor-2 (Nrf2)-dependent manner in a high fat (HF) induced model. METHODS AND RESULTS: Nrf2-null and wild-type (WT) mice were fed an HF diet containing 0 or 2% GTE for eight weeks prior to assessing parameters of NASH. Compared to WT mice, Nrf2-null mice had increased serum alanine aminotransferase, hepatic triglyceride, expression of free fatty acid uptake and lipogenic genes, malondialdehyde and NFκB phosphorylation and expression of pro-inflammatory genes. In WT mice, GTE increased Nrf2 and NADPH:quinone oxidoreductase-1 mRNA, and lowered hepatic steatosis, lipid uptake and lipogenic gene expression, malondialdehyde, and NFκB-dependent inflammation. In Nrf2-null mice, GTE lowered NFκB phosphorylation and TNF-α and MCP1 mRNA to levels observed in WT mice fed GTE whereas hepatic triglyceride and lipogenic genes were lowered only to those of WT mice fed no GTE. Malondialdehyde was lowered in Nrf2-null mice fed GTE, but not to levels of WT mice, and without improving the hepatic antioxidants α-tocopherol, ascorbic acid and uric acid. CONCLUSION: Nrf2 deficiency exacerbates NASH whereas anti-inflammatory and hypolipidemic activities of GTE likely occur largely independent of Nrf2 signaling.


Subject(s)
Camellia sinensis/chemistry , Lipid Metabolism/drug effects , NF-E2-Related Factor 2/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Plant Extracts/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Diet, High-Fat/adverse effects , Humans , Inflammation/diet therapy , Inflammation/metabolism , Lipid Metabolism/genetics , Liver/drug effects , Liver/metabolism , Male , Mice, Inbred C57BL , Mice, Mutant Strains , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Non-alcoholic Fatty Liver Disease/diet therapy , Non-alcoholic Fatty Liver Disease/etiology , Protective Agents/pharmacology
16.
Am J Clin Nutr ; 102(5): 1070-80, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26447154

ABSTRACT

BACKGROUND: Increasing dietary fat intake is expected to improve α-tocopherol bioavailability, which could be beneficial for improving α-tocopherol status, especially in cohorts at high cardiometabolic risk who fail to meet dietary α-tocopherol requirements. OBJECTIVE: Our objective was to assess dose-dependent effects of dairy fat and metabolic syndrome (MetS) health status on α-tocopherol pharmacokinetics in plasma and lipoproteins. DESIGN: A randomized, crossover, double-blind study was conducted in healthy and MetS adults (n = 10/group) who ingested encapsulated hexadeuterium-labeled (d6)-RRR-α-tocopherol (15 mg) with 240 mL nonfat (0.2 g fat), reduced-fat (4.8 g fat), or whole (7.9 g fat) milk before blood collection at regular intervals for 72 h. RESULTS: Compared with healthy participants, those with MetS had lower (P < 0.05) baseline plasma α-tocopherol (µmol/mmol lipid) and greater oxidized low-density lipoprotein (LDL), interleukin (IL)-6, IL-10, and C-reactive protein. Regardless of health status, d6-α-tocopherol bioavailability was unaffected by increasing amounts of dairy fat provided by milk beverages, but MetS participants had lower estimated d6-α-tocopherol absorption (±SEM) than did healthy participants (26.1% ± 1.0% compared with 29.5% ± 1.1%). They also had lower plasma d6-α-tocopherol AUC from 0 to 72 h, as well as maximal concentrations (Cmax: 2.04 ± 0.14 compared with 2.73 ± 0.18 µmol/L) and slower rates of plasma disappearance but similar times to Cmax. MetS participants had lower d6-α-tocopherol AUC from t = 0-12 h (AUC0- t final) in lipoprotein fractions [chylomicron, very-low-density lipoprotein (VLDL), LDL, high-density lipoprotein]. Percentages of d6-α-tocopherol AUC0- t final in both the chylomicron (r = -0.46 to -0.52) and VLDL (r = -0.49 to -0.68) fractions were inversely correlated with oxidized LDL, IL-10, IL-6, and C-reactive protein. CONCLUSIONS: At dietary intakes equivalent to the Recommended Dietary Allowance, α-tocopherol bioavailability is unaffected by dairy fat quantity but is lower in MetS adults, potentially because of greater inflammation and oxidative stress that limits small intestinal α-tocopherol absorption and/or impairs hepatic α-tocopherol trafficking. These findings support higher dietary α-tocopherol requirements for MetS adults. This trial was registered at www.clinicaltrials.gov as NCT01787591.


Subject(s)
Antioxidants/therapeutic use , Dietary Fats/administration & dosage , Dietary Supplements , Intestinal Absorption , Metabolic Syndrome/diet therapy , Vitamin E Deficiency/diet therapy , alpha-Tocopherol/therapeutic use , Adult , Animals , Antioxidants/adverse effects , Antioxidants/analysis , Antioxidants/metabolism , Cross-Over Studies , Deuterium , Dietary Fats/metabolism , Dietary Supplements/adverse effects , Double-Blind Method , Down-Regulation , Female , Follow-Up Studies , Humans , Inflammation Mediators/blood , Lipoproteins, LDL/blood , Male , Metabolic Syndrome/immunology , Metabolic Syndrome/metabolism , Metabolic Syndrome/physiopathology , Milk/chemistry , Oxidative Stress , Vitamin E Deficiency/etiology , Young Adult , alpha-Tocopherol/adverse effects , alpha-Tocopherol/blood , alpha-Tocopherol/metabolism
17.
Nutr Res ; 33(5): 358-66, 2013 May.
Article in English | MEDLINE | ID: mdl-23684437

ABSTRACT

While the impact of food composition and processing on carotenoid bioavailability has been the subject of several investigations, the effect of meal patterning remains unknown. The aim of this pilot study was to assess the impact of select consumption patterns on the bioavailability of carotenoids from vegetables. On three randomized testing days, subjects consumed raw salad vegetables and 8 g canola oil over a two meal period in three meal patterns. Meal patterns included consumption of 100% of vegetables and oil in the first meal and 0% in the second, 75% in the first meal and 25% in the second, and 50% in the first meal and 50% in the second. Additional protein-rich "chef's salad" ingredients were distributed equally between meals. We hypothesized that carotenoid absorption would be highest when 50% of vegetables and oil were consumed at each meal and lowest when 100% were consumed at once. Blood was collected 0 to 12 hours postprandially and triacylglycerol-rich lipoprotein fractions (TRL) were isolated by ultracentrifugation. TRL carotenoid concentrations were analyzed by high performance liquid chromatography-diode array detector. Considering all carotenoids, absorption expressed as area under the curve was greatest when ≥75% of vegetables were consumed in a single meal (P < .05). Absorption of carotenes also followed this trend (P < .05 for α- and ß-carotene). For xanthophylls, consuming all vegetables in one meal increased absorption compared to intake of 50% at each meal (P < .05). These data suggest that carotenoid absorption may be the greatest when daily recommended vegetables are consumed in one meal compared to smaller doses over multiple meals.


Subject(s)
Carotenoids/blood , Carotenoids/pharmacokinetics , Fatty Acids, Monounsaturated , Meals , Vegetables/chemistry , Adult , Antioxidants/administration & dosage , Antioxidants/pharmacokinetics , Area Under Curve , Biological Availability , Chromatography, Liquid , Feeding Behavior , Humans , Male , Pilot Projects , Postprandial Period/drug effects , Rapeseed Oil , Triglycerides/blood , Young Adult
18.
J Agric Food Chem ; 61(6): 1364-72, 2013 Feb 13.
Article in English | MEDLINE | ID: mdl-23330879

ABSTRACT

Recently, interest in the application of natural pigments to replace synthetic dyes in beverages has grown. The present study investigates the stability of anthocyanin-rich grape and purple sweet potato (PSP) extracts to photo- and thermostresses in ready-to-drink (RTD) beverage models including hot fill beverages with various concentrations of ascorbic acid, a preserved beverage, and a vitamin-enriched water beverage. Thermo- and photostresses were induced at 40, 60, and 80 °C and 250, 500, and 750 W/m(2), respectively. Qualitative and quantitative data on anthocyanin content were collected by pH differential assay and LC-MS. Increasing concentration of ascorbic acid caused more rapid degradation through thermostress, but had a protective effect through photostress. Additionally, PSP was significantly less stable than grape extract in the vitamin-enriched water model beverage through photostress. Furthermore, photostress caused the formation of monoacylated peonidins from diacylated peonidins.


Subject(s)
Anthocyanins/chemistry , Beverages/analysis , Ipomoea batatas/chemistry , Vitis/chemistry , Beverages/radiation effects , Hot Temperature , Kinetics , Models, Chemical
19.
Nutr Res ; 30(5): 327-40, 2010 May.
Article in English | MEDLINE | ID: mdl-20579525

ABSTRACT

Despite the presence of bioactive catechin B-ring auto-oxidation dimers in tea, little is known regarding their absorption in humans. Our hypothesis for this research is that catechin auto-oxidation dimers are present in teas and are absorbable by human intestinal epithelial cells. Dimers (theasinensins [THSNs] and P-2 analogs) were quantified in commercial teas by high-performance liquid chromatography-mass spectrometry. (-)-Epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCG) homodimers were present at 10 to 43 and 0 to 62 mumol/g leaf, respectively. The EGC-EGCG heterodimers were present at 0 to 79 mumol/g. The potential intestinal absorption of these dimers was assessed using Caco-2 intestinal cells. Catechin monomers and dimers were detected in cells exposed to media containing monomers and preformed dimers. Accumulation of dimers was significantly greater than monomers from test media. Three-hour accumulation of EGC and EGCG was 0.19% to 0.55% and 1.24% to 1.35%, respectively. Comparatively, 3-hour accumulation of the EGC P-2 analog and THSNs C/E was 0.89% +/- 0.28% and 1.53% +/- 0.36%, respectively. Accumulation of P-2 and THSNs A/D was 6.93% +/- 2.1% and 10.1% +/- 3.6%, respectively. The EGCG-EGC heterodimer P-2 analog and THSN B 3-hour accumulation was 4.87% +/- 2.2% and 4.65% +/- 2.8%, respectively. One-hour retention of P-2 and THSNs A/D was 171% +/- 22% and 29.6% +/- 9.3% of accumulated amount, respectively, suggesting intracellular oxidative conversion of THSNs to P-2. These data suggest that catechin dimers present in the gut lumen may be readily absorbed by intestinal epithelium.


Subject(s)
Camellia sinensis/chemistry , Catechin/metabolism , Epithelial Cells/metabolism , Intestinal Mucosa/metabolism , Tea/chemistry , Benzopyrans/chemistry , Benzopyrans/metabolism , Caco-2 Cells , Catechin/analogs & derivatives , Catechin/chemistry , Chromatography, Liquid , Dimerization , Humans , Intestinal Absorption , Mass Spectrometry , Oxidation-Reduction , Phenols/chemistry , Phenols/metabolism , Polymers/chemistry , Polymers/metabolism
20.
J Agric Food Chem ; 58(11): 6685-91, 2010 Jun 09.
Article in English | MEDLINE | ID: mdl-20446738

ABSTRACT

The impact of carbohydrates and milk on the bioavailability of catechin (C) and epicatechin (EC) from chocolate has been previously studied. However, little data exist regarding potential modulation of the phase II metabolism by these chocolate matrix factors. The objectives of this study were to assess the impact of matrix composition on qualitative and quantitative profiles of circulating catechins and their metabolites following administration of commercially relevant chocolate confections. Sprague-Dawley rats were administered 1.5 g of a confection (reference dark, high sucrose, or milk chocolate) by intragastric gavage, and plasma samples were collected over 8 h. High-performance liquid chromatography-mass spectrometry analysis was performed to quantify C, EC, and their metabolites. The predominant metabolites were O-glucuronides (two metabolites) and O-Me-O-glucuronides (three metabolites). Plasma concentrations of metabolites were generally the highest for high sucrose treatment and lowest for milk treatment, while the reference dark treatment generally resulted in intermediate concentrations. The O-Me-(+/-)-C/EC-O-beta-glucuronide (peak 4) was significantly higher for the high sucrose treatment (2325 nM h) versus the milk treatment (1300 nM h). Additionally, C(MAX) values for (+/-)-C/EC-O-beta-glucuronide (peak 3) and two O-Me-(+/-)-C/EC-O-beta-glucuronides (peaks 4 and 6) were significantly higher for the high sucrose treatment (4012, 518, and 2518 nM, respectively) versus the milk treatment (2590, 240, and 1670 nM, respectively). Milk and sucrose appear to modulate both metabolism and plasma pharmacokinetics and, to a lesser extent, the overall bioavailability of catechins from chocolate confections.


Subject(s)
Cocos/chemistry , Flavonoids/pharmacokinetics , Plant Extracts/pharmacokinetics , Administration, Oral , Animals , Flavonoids/administration & dosage , Flavonoids/metabolism , Male , Plant Extracts/administration & dosage , Plant Extracts/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...