Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Nat Commun ; 15(1): 3816, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769293

ABSTRACT

SARS-CoV-2 infection causes severe pulmonary manifestations, with poorly understood mechanisms and limited treatment options. Hyperferritinemia and disrupted lung iron homeostasis in COVID-19 patients imply that ferroptosis, an iron-dependent cell death, may occur. Immunostaining and lipidomic analysis in COVID-19 lung autopsies reveal increases in ferroptosis markers, including transferrin receptor 1 and malondialdehyde accumulation in fatal cases. COVID-19 lungs display dysregulation of lipids involved in metabolism and ferroptosis. We find increased ferritin light chain associated with severe COVID-19 lung pathology. Iron overload promotes ferroptosis in both primary cells and cancerous lung epithelial cells. In addition, ferroptosis markers strongly correlate with lung injury severity in a COVID-19 lung disease model using male Syrian hamsters. These results reveal a role for ferroptosis in COVID-19 pulmonary disease; pharmacological ferroptosis inhibition may serve as an adjuvant therapy to prevent lung damage during SARS-CoV-2 infection.


Subject(s)
COVID-19 , Ferroptosis , Lung , Mesocricetus , SARS-CoV-2 , COVID-19/virology , COVID-19/metabolism , COVID-19/pathology , Animals , Humans , Male , Lung/pathology , Lung/virology , Lung/metabolism , SARS-CoV-2/physiology , Female , Iron/metabolism , Middle Aged , Disease Models, Animal , Aged , Lung Injury/virology , Lung Injury/metabolism , Lung Injury/pathology , Iron Overload/metabolism , Adult , Cricetinae
2.
J Am Soc Cytopathol ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38677894

ABSTRACT

Cytopathologists are at the forefront of specimen acquisition during many different procedures while providing rapid on site evaluation (ROSE). This has added pressure to cytopathologists as more and more ancillary testing is being requested on smaller amounts of tissue. By focusing on the most common organ sites: lung, head and neck, and pancreas, there is a discussion of what the cytopathologist needs to know to triage tissue successfully. Finally, there is a discussion of the logistical aspects of integrating small biopsies into everyday practice.

3.
Diagn Cytopathol ; 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409908

ABSTRACT

Mucinous neoplasm with extracellular mucin can be challenging to interpret on fine needle aspiration and core biopsies. Determining the biologic origin of the mucin/mucinous cells, that is, benign/incidental versus neoplasm, invasive versus in situ, and primary versus metastatic tumors, requires a thorough multidisciplinary evaluation. The work up of these lesions includes morphologic analysis with ancillary immunohistochemical and/or molecular studies and correlation with clinical and imaging studies. This review outlines a practical approach to the diagnosis of mucinous lesions in the lung with comprehensive review of literature.

5.
J Transl Med ; 22(1): 67, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38229113

ABSTRACT

PURPOSE: Evaluate the behavior of lung nodules occurring in areas of pulmonary fibrosis and compare them to pulmonary nodules occurring in the non-fibrotic lung parenchyma. METHODS: This retrospective review of chest CT scans and electronic medical records received expedited IRB approval and a waiver of informed consent. 4500 consecutive patients with a chest CT scan report containing the word fibrosis or a specific type of fibrosis were identified using the system M*Model Catalyst (Maplewood, Minnesota, U.S.). The largest nodule was measured in the longest dimension and re-evaluated, in the same way, on the follow-up exam if multiple time points were available. The nodule doubling time was calculated. If the patient developed cancer, the histologic diagnosis was documented. RESULTS: Six hundred and nine patients were found to have at least one pulmonary nodule on either the first or the second CT scan. 274 of the largest pulmonary nodules were in the fibrotic tissue and 335 were in the non-fibrotic lung parenchyma. Pathology proven cancer was more common in nodules occurring in areas of pulmonary fibrosis compared to nodules occurring in areas of non-fibrotic lung (34% vs 15%, p < 0.01). Adenocarcinoma was the most common cell type in both groups but more frequent in cancers occurring in non-fibrotic tissue. In the non-fibrotic lung, 1 of 126 (0.8%) of nodules measuring 1 to 6 mm were cancer. In contrast, 5 of 49 (10.2%) of nodules in fibrosis measuring 1 to 6 mm represented biopsy-proven cancer (p < 0.01). The doubling time for squamous cell cancer was shorter in the fibrotic lung compared to non-fibrotic lung, however, the difference was not statistically significant (p = 0.24). 15 incident lung nodules on second CT obtained ≤ 18 months after first CT scan was found in fibrotic lung and eight (53%) were diagnosed as cancer. CONCLUSIONS: Nodules occurring in fibrotic lung tissue are more likely to be cancer than nodules in the nonfibrotic lung. Incident pulmonary nodules in pulmonary fibrosis have a high likelihood of being cancer.


Subject(s)
Lung Neoplasms , Multiple Pulmonary Nodules , Pulmonary Fibrosis , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Pulmonary Fibrosis/diagnostic imaging , Pulmonary Fibrosis/pathology , Multiple Pulmonary Nodules/pathology , Lung/diagnostic imaging , Lung/pathology , Tomography, X-Ray Computed/methods
6.
J Transl Med ; 22(1): 51, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38216992

ABSTRACT

BACKGROUND: Chest Computed tomography (CT) scans detect lung nodules and assess pulmonary fibrosis. While pulmonary fibrosis indicates increased lung cancer risk, current clinical practice characterizes nodule risk of malignancy based on nodule size and smoking history; little consideration is given to the fibrotic microenvironment. PURPOSE: To evaluate the effect of incorporating fibrotic microenvironment into classifying malignancy of lung nodules in chest CT images using deep learning techniques. MATERIALS AND METHODS: We developed a visualizable 3D classification model trained with in-house CT dataset for the nodule malignancy classification task. Three slightly-modified datasets were created: (1) nodule alone (microenvironment removed); (2) nodule with surrounding lung microenvironment; and (3) nodule in microenvironment with semantic fibrosis metadata. For each of the models, tenfold cross-validation was performed. Results were evaluated using quantitative measures, such as accuracy, sensitivity, specificity, and area-under-curve (AUC), as well as qualitative assessments, such as attention maps and class activation maps (CAM). RESULTS: The classification model trained with nodule alone achieved 75.61% accuracy, 50.00% sensitivity, 88.46% specificity, and 0.78 AUC; the model trained with nodule and microenvironment achieved 79.03% accuracy, 65.46% sensitivity, 85.86% specificity, and 0.84 AUC. The model trained with additional semantic fibrosis metadata achieved 80.84% accuracy, 74.67% sensitivity, 84.95% specificity, and 0.89 AUC. Our visual evaluation of attention maps and CAM suggested that both the nodules and the microenvironment contributed to the task. CONCLUSION: The nodule malignancy classification performance was found to be improving with microenvironment data. Further improvement was found when incorporating semantic fibrosis information.


Subject(s)
Lung Neoplasms , Pulmonary Fibrosis , Solitary Pulmonary Nodule , Humans , Lung Neoplasms/pathology , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/diagnostic imaging , Pulmonary Fibrosis/pathology , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/pathology , Tomography, X-Ray Computed/methods , Lung/pathology , Tumor Microenvironment
7.
J Thorac Cardiovasc Surg ; 167(5): e106-e130, 2024 May.
Article in English | MEDLINE | ID: mdl-37741314

ABSTRACT

OBJECTIVE: Lung transplantation remains limited by the shortage of healthy organs. Cross-circulation with a healthy swine recipient provides a durable physiologic environment to recover injured donor lungs. In a clinical application, a recipient awaiting lung transplantation could be placed on cross-circulation to recover damaged donor lungs, enabling eventual transplantation. Our objective was to assess the ability of recipient swine with respiratory compromise to tolerate cross-circulation and support recovery of donor lungs subjected to extended cold ischemia. METHODS: Swine donor lungs (n = 6) were stored at 4 °C for 24 hours while recipient swine (n = 6) underwent gastric aspiration injury before cross-circulation. Longitudinal multiscale analyses (blood gas, bronchoscopy, radiography, histopathology, cytokine quantification) were performed to evaluate recipient swine and extracorporeal lungs on cross-circulation. RESULTS: Recipient swine lung injury resulted in sustained, impaired oxygenation (arterial oxygen tension/inspired oxygen fraction ratio 205 ± 39 mm Hg vs 454 ± 111 mm Hg at baseline). Radiographic, bronchoscopic, and histologic assessments demonstrated bilateral infiltrates, airway cytokine elevation, and significantly worsened lung injury scores. Recipient swine provided sufficient metabolic support for extracorporeal lungs to demonstrate robust functional improvement (0 hours, arterial oxygen tension/inspired oxygen fraction ratio 138 ± 28.2 mm Hg; 24 hours, 539 ± 156 mm Hg). Multiscale analyses demonstrated improved gross appearance, aeration, and cellular regeneration in extracorporeal lungs by 24 hours. CONCLUSIONS: We demonstrate that acutely injured recipient swine tolerate cross-circulation and enable recovery of donor lungs subjected to extended cold storage. This proof-of-concept study supports feasibility of cross-circulation for recipients with isolated lung disease who are candidates for this clinical application.


Subject(s)
Lung Injury , Lung Transplantation , Swine , Animals , Lung Injury/pathology , Extracorporeal Circulation/methods , Organ Preservation/methods , Lung , Lung Transplantation/adverse effects , Lung Transplantation/methods , Cytokines/metabolism , Oxygen/metabolism , Perfusion/methods
8.
bioRxiv ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38077087

ABSTRACT

Although lung disease is a major cause of mortality, the mechanisms involved in human lung regeneration are unclear because of the lack of experimental models. Here we report a novel model where human pluripotent stem cell-derived expandable cell lines sharing features of airway secretory and basal cells engraft in the distal rat lung after conditioning by locoregional de-epithelialization followed by irradiation and immunosuppression. The engrafting cells, which we named distal lung epithelial progenitors (DLEPs), contributed to alveolar epithelial cells and generated 'KRT5-pods', structures involved in distal lung repair after severe injury, but only rarely to distal airways. Most strikingly, however, injury induced by the conditioning regimen was largely prevented by the engrafting DLEPs. The approach described here provides a model to study mechanisms involved in human lung regeneration, and potentially lays the foundation for the preclinical development of cell therapy to treat lung injury and disease.

10.
Proc Natl Acad Sci U S A ; 120(46): e2312595120, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37931099

ABSTRACT

The NF-κB family of transcription factors and the Ras family of small GTPases are important mediators of proproliferative signaling that drives tumorigenesis and carcinogenesis. The κB-Ras proteins were previously shown to inhibit both NF-κB and Ras activation through independent mechanisms, implicating them as tumor suppressors with potentially broad relevance to human cancers. In this study, we have used two mouse models to establish the relevance of the κB-Ras proteins for tumorigenesis. Additionally, we have utilized a pan-cancer bioinformatics analysis to explore the role of the κB-Ras proteins in human cancers. Surprisingly, we find that the genes encoding κB-Ras 1 (NKIRAS1) and κB-Ras 2 (NKIRAS2) are rarely down-regulated in tumor samples with oncogenic Ras mutations. Reduced expression of human NKIRAS1 alone is associated with worse prognosis in at least four cancer types and linked to a network of genes implicated in tumorigenesis. Our findings provide direct evidence that loss of NKIRAS1 in human tumors that do not carry oncogenic RAS mutations is associated with worse clinical outcomes.


Subject(s)
Carcinogenesis , Carrier Proteins , Genes, Tumor Suppressor , Animals , Humans , Mice , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Genes, ras , NF-kappa B/metabolism , ras Proteins/metabolism , Carrier Proteins/genetics
11.
Clin Imaging ; 103: 109982, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37717512

ABSTRACT

PURPOSE: Pleuroparenchymal Fibroelastosis (PPFE) is a type of pulmonary fibrosis most commonly occurring at the apices. Patients with PPFE have an increased risk of adverse effects from lung biopsy and in the post-surgical setting. Here, we investigated simple and reproducible measurements on chest CT to evaluate their predictive value in diagnosing PPFE. METHODS: We analyzed a cohort of patients with histologically-proven PPFE and compared them to a cohort of patients diagnosed with "biapical scarring" (BAS) on chest CT. We measured plueuroparenchymal thickness using several independent parameters on chest CT. We also assessed other radiologic and clinical characteristics to identify if any were predictive of PPFF. RESULTS: Our analysis demonstrated the average greatest apical thickness with a cut off of 4.5 mm yielded a sensitivity of 94.4% and a specificity of 88.9%, and an area under the curve of 97.2%. Single greatest apical thickness with a cut off of 7.5 mm had a sensitivity of 100% and a specificity of 88.9%, with the area under the curve of 97.8%. Average greatest upper lobe thickness with a cut off of 8.0 mm had a sensitivity of 88.9% and a specificity of 100%, with an area under the curve of 98.2%. Single greatest upper lobe thickness with a cut off of 8.5 yielded both a sensitivity and specificity of 94.4% and an area under the curve of 94.3%. CONCLUSION: Measurements described above are highly sensitive and specific for the diagnosis of PPFE and warrant investigation with a larger cohort of patients.


Subject(s)
Lung , Pulmonary Fibrosis , Humans , Lung/diagnostic imaging , Lung/pathology , Pulmonary Fibrosis/diagnostic imaging , Tomography, X-Ray Computed , Biopsy
12.
J Thorac Oncol ; 18(10): 1290-1302, 2023 10.
Article in English | MEDLINE | ID: mdl-37702631

ABSTRACT

INTRODUCTION: Pathologic response has been proposed as an early clinical trial end point of survival after neoadjuvant treatment in clinical trials of NSCLC. The International Association for the Study of Lung Cancer (IASLC) published recommendations for pathologic evaluation of resected lung cancers after neoadjuvant therapy. The aim of this study was to assess pathologic response interobserver reproducibility using IASLC criteria. METHODS: An international panel of 11 pulmonary pathologists reviewed hematoxylin and eosin-stained slides from the lung tumors of resected NSCLC from 84 patients who received neoadjuvant immune checkpoint inhibitors in six clinical trials. Pathologic response was assessed for percent viable tumor, necrosis, and stroma. For each slide, tumor bed area was measured microscopically, and pre-embedded formulas calculated unweighted and weighted major pathologic response (MPR) averages to reflect variable tumor bed proportion. RESULTS: Unanimous agreement among pathologists for MPR was observed in 68 patients (81%), and inter-rater agreement (IRA) was 0.84 (95% confidence interval [CI]: 0.76-0.92) and 0.86 (95% CI: 0.79-0.93) for unweighted and weighted averages, respectively. Overall, unweighted and weighted methods did not reveal significant differences in the classification of MPR. The highest concordance by both methods was observed for cases with more than 95% viable tumor (IRA = 0.98, 95% CI: 0.96-1) and 0% viable tumor (IRA = 0.94, 95% CI: 0.89-0.98). The most common reasons for discrepancies included interpretations of tumor bed, presence of prominent stromal inflammation, distinction between reactive and neoplastic pneumocytes, and assessment of invasive mucinous adenocarcinoma. CONCLUSIONS: Our study revealed excellent reliability in cases with no residual viable tumor and good reliability for MPR with the IASLC recommended less than or equal to 10% cutoff for viable tumor after neoadjuvant therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/pathology , Neoadjuvant Therapy/methods , Reproducibility of Results , Carcinoma, Non-Small-Cell Lung/pathology , Lung/pathology
13.
Cell Host Microbe ; 31(10): 1668-1684.e12, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37738983

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes several proteins that inhibit host interferon responses. Among these, ORF6 antagonizes interferon signaling by disrupting nucleocytoplasmic trafficking through interactions with the nuclear pore complex components Nup98-Rae1. However, the roles and contributions of ORF6 during physiological infection remain unexplored. We assessed the role of ORF6 during infection using recombinant viruses carrying a deletion or loss-of-function (LoF) mutation in ORF6. ORF6 plays key roles in interferon antagonism and viral pathogenesis by interfering with nuclear import and specifically the translocation of IRF and STAT transcription factors. Additionally, ORF6 inhibits cellular mRNA export, resulting in the remodeling of the host cell proteome, and regulates viral protein expression. Interestingly, the ORF6:D61L mutation that emerged in the Omicron BA.2 and BA.4 variants exhibits reduced interactions with Nup98-Rae1 and consequently impairs immune evasion. Our findings highlight the role of ORF6 in antagonizing innate immunity and emphasize the importance of studying the immune evasion strategies of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Viral Proteins , Humans , COVID-19/virology , Immunity, Innate , Interferons/genetics , Interferons/metabolism , SARS-CoV-2/genetics , Viral Proteins/genetics , Viral Proteins/metabolism
15.
Cancer Immunol Res ; 11(2): 164-170, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36512052

ABSTRACT

Treatment with immune checkpoint blockade (ICB) often fails to elicit durable antitumor immunity. Recent studies suggest that ICB does not restore potency to terminally dysfunctional T cells, but instead drives proliferation and differentiation of self-renewing progenitor T cells into fresh, effector-like T cells. Antitumor immunity catalyzed by ICB is characterized by mobilization of antitumor T cells in systemic circulation and tumor. To address whether abundance of self-renewing T cells in blood is associated with immunotherapy response, we used flow cytometry of peripheral blood from a cohort of patients with metastatic non-small cell lung cancer (NSCLC) treated with ICB. At baseline, expression of T-cell factor 1 (TCF1), a marker of self-renewing T cells, was detected at higher frequency in effector-memory (CCR7-) CD8+ T cells from patients who experienced durable clinical benefit compared to those with primary resistance to ICB. On-treatment blood samples from patients benefiting from ICB also exhibited a greater frequency of TCF1+CCR7-CD8+ T cells and higher proportions of TCF1 expression in treatment-expanded PD-1+CCR7-CD8+ T cells. The observed correlation of TCF1 frequency in CCR7-CD8+ T cells and response to ICB suggests that broader examination of self-renewing T-cell abundance in blood will determine its potential as a noninvasive, predictive biomarker of response and resistance to immunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Receptors, CCR7 , CD8-Positive T-Lymphocytes , Immunotherapy
16.
Histopathology ; 82(2): 242-253, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36130728

ABSTRACT

Thyroid transcription factor 1 (TTF1) and p40 are widely-utilized diagnostic markers of lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC), respectively. Diffuse coexpression of TTF1 and p40 has been described in only rare case reports. In a multi-institutional study, we collected the largest cohort of these unusual tumours to-date (n = 14), with the goal of elucidating their clinicopathological and genomic characteristics. Lung tumours with diffuse coexpression (labelling 50-100% tumour cells) of TTF1 clone 8G7G3/1 and p40 clone BC28 were identified. Detailed clinicopathological and immunohistochemical parameters were analyzed. Eight tumours were analyzed by next-generation sequencing (NGS) and the results were compared to those in > 9 K LUAD and > 1 K LUSC. All tumours with diffuse TTF1/p40 coexpression were poorly differentiated non-small cell lung carcinomas (NSCLC), 42% of which had basaloid features. Some tumours exhibited focal keratinization (14%), napsin A and/or mucicarmine labelling (46%) or both squamous and glandular features (7%). NGS revealed a uniquely high rate of FGFR1 amplifications (70%) compared to either LUAD (0.7%, P < 0.0001) or LUSC (11%, P = 0.001). LUAD-type targetable driver alterations were identified in 38% of cases (one EGFR, two KRAS G12C). The tumours were clinically aggressive, exhibiting metastatic disease in most patients. Lung carcinomas with diffuse TTF1/p40 coexpression represent poorly differentiated NSCLCs with frequent basaloid features, but some show evidence of focal squamous, glandular or dual differentiation with a distinctly high rate of FGFR1 amplifications. The presence of targetable LUAD-type alterations (EGFR, KRAS G12C) emphasizes the importance of molecular testing in these tumours.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Thyroid Nuclear Factor 1 , Carcinoma, Non-Small-Cell Lung/genetics , Genomics , Lung Neoplasms/genetics , Carcinoma, Squamous Cell/genetics , DNA-Binding Proteins/genetics , Transcription Factors/genetics
17.
bioRxiv ; 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36299428

ABSTRACT

We and others have previously shown that the SARS-CoV-2 accessory protein ORF6 is a powerful antagonist of the interferon (IFN) signaling pathway by directly interacting with Nup98-Rae1 at the nuclear pore complex (NPC) and disrupting bidirectional nucleo-cytoplasmic trafficking. In this study, we further assessed the role of ORF6 during infection using recombinant SARS-CoV-2 viruses carrying either a deletion or a well characterized M58R loss-of-function mutation in ORF6. We show that ORF6 plays a key role in the antagonism of IFN signaling and in viral pathogenesis by interfering with karyopherin(importin)-mediated nuclear import during SARS-CoV-2 infection both in vitro , and in the Syrian golden hamster model in vivo . In addition, we found that ORF6-Nup98 interaction also contributes to inhibition of cellular mRNA export during SARS-CoV-2 infection. As a result, ORF6 expression significantly remodels the host cell proteome upon infection. Importantly, we also unravel a previously unrecognized function of ORF6 in the modulation of viral protein expression, which is independent of its function at the nuclear pore. Lastly, we characterized the ORF6 D61L mutation that recently emerged in Omicron BA.2 and BA.4 and demonstrated that it is able to disrupt ORF6 protein functions at the NPC and to impair SARS-CoV-2 innate immune evasion strategies. Importantly, the now more abundant Omicron BA.5 lacks this loss-of-function polymorphism in ORF6. Altogether, our findings not only further highlight the key role of ORF6 in the antagonism of the antiviral innate immune response, but also emphasize the importance of studying the role of non-spike mutations to better understand the mechanisms governing differential pathogenicity and immune evasion strategies of SARS-CoV-2 and its evolving variants. ONE SENTENCE SUMMARY: SARS-CoV-2 ORF6 subverts bidirectional nucleo-cytoplasmic trafficking to inhibit host gene expression and contribute to viral pathogenesis.

18.
Elife ; 112022 09 21.
Article in English | MEDLINE | ID: mdl-36129169

ABSTRACT

Viral infection often causes severe damage to the lungs, leading to the appearance of ectopic basal cells (EBCs) and tuft cells in the lung parenchyma. Thus far, the roles of these ectopic epithelial cells in alveolar regeneration remain controversial. Here, we confirm that the ectopic tuft cells are originated from EBCs in mouse models and COVID-19 lungs. The differentiation of tuft cells from EBCs is promoted by Wnt inhibition while suppressed by Notch inhibition. Although progenitor functions have been suggested in other organs, pulmonary tuft cells don't proliferate or give rise to other cell lineages. Consistent with previous reports, Trp63CreERT2 and KRT5-CreERT2-labeled ectopic EBCs do not exhibit alveolar regeneration potential. Intriguingly, when tamoxifen was administrated post-viral infection, Trp63CreERT2 but not KRT5-CreERT2 labels islands of alveolar epithelial cells that are negative for EBC biomarkers. Furthermore, germline deletion of Trpm5 significantly increases the contribution of Trp63CreERT2-labeled cells to the alveolar epithelium. Although Trpm5 is known to regulate tuft cell development, complete ablation of tuft cell production fails to improve alveolar regeneration in Pou2f3-/- mice, implying that Trpm5 promotes alveolar epithelial regeneration through a mechanism independent of tuft cells.


Subject(s)
COVID-19 , Animals , Biomarkers , Cell Differentiation , Cell Lineage , Epithelial Cells , Mice , Tamoxifen/pharmacology , Trans-Activators
20.
Adv Anat Pathol ; 29(6): 329-336, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36053019

ABSTRACT

Pulmonary neuroendocrine neoplasms comprise ~20% of all lung tumors. Typical carcinoid, atypical carcinoid, small cell carcinoma, and large cell neuroendocrine carcinoma represent the 4 major distinct subtypes recognized on resections. This review provides a brief overview of the cytomorphologic features and the 2021 World Health Organization classification of these tumor types on small biopsy and cytology specimens. Also discussed are the role of immunohistochemistry in the diagnosis and molecular signatures of pulmonary neuroendocrine tumors.


Subject(s)
Carcinoid Tumor , Carcinoma, Neuroendocrine , Lung Neoplasms , Neuroendocrine Tumors , Humans , Immunohistochemistry , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Carcinoma, Neuroendocrine/pathology , Carcinoid Tumor/diagnosis , Carcinoid Tumor/pathology , Neuroendocrine Tumors/diagnosis , Neuroendocrine Tumors/pathology , Biopsy , World Health Organization
SELECTION OF CITATIONS
SEARCH DETAIL
...