Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 915: 169921, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38199379

ABSTRACT

In recent years, the advancement and greater magnitude of products, which led to the intensification in shrimp aquaculture is the result of utilization of modern tools and synchronization with other fields of science like microbiology and biotechnology. This intensification led to the elevation of disorders such as the development of several diseases and complications associated with biofouling. The use of antibiotics in aquaculture is discouraged due to their certain hazardous paraphernalia. Consequently, there has been a growing interest in exploring alternative strategies, with probiotics and prebiotics emerging as environmentally friendly substitutes for antibiotic treatments in shrimp aquaculture. This review highlighted the results of probiotics and prebiotics administration in the improvement of water quality, enhancement of growth and survival rates, stress resistance, health status and disease resistance, modulation of enteric microbiota and immunomodulation of different shrimp species. Additionally, the study sheds light on the comprehensive role of prebiotics and probiotics in elucidating the mechanistic framework, contributing to a deeper understanding of shrimp physiology and immunology. Besides their role in growth and development of shrimp aquaculture, the eco-friendly behavior of prebiotics and probiotics have made them ideal to control pollution in aquaculture systems. This comprehensive exploration of prebiotics and probiotics aims to address gaps in our understanding, including the economic aspects of shrimp aquaculture in terms of benefit-cost ratio, and areas worthy of further investigation by drawing insights from previous studies on different shrimp species. Ultimately, this commentary seeks to contribute to the evolving body of knowledge surrounding prebiotics and probiotics, offering valuable perspectives that extend beyond the ecological dimensions of shrimp aquaculture.


Subject(s)
Prebiotics , Probiotics , Animals , Consensus , Crustacea , Aquaculture/methods , Anti-Bacterial Agents
2.
Chemosphere ; 342: 140157, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37716553

ABSTRACT

The perilousness of arsenic and cadmium (As-Cd) toxicity in water and soil presents a substantial hazard to the ecosystem and human well-being. Additionally, this metal (loids) (MLs) can have a deleterious effect on rice quality and yield, owing to the existence of toxic stress. In response to the pressing concern of reducing the MLs accumulation in rice grain, this study has prepared magnesium-manganese-modified corn-stover biochar (MMCB), magnesium-manganese-modified eggshell char (MMEB), and a combination of both (MMCEB). To test the effectiveness of these amendments, several pot trials were conducted, utilizing 1% and 2% application rates. The research discovered that the MMEB followed by MMCEB treatment at a 2% rate yielded the most significant paddy and rice quality, compared to the untreated control (CON) and MMCB. MMEB and MMCEB also extensively decreased the MLs content in the grain than CON, thereby demonstrating the potential to enrich food security and human healthiness. In addition, MMEB and MMCEB augmented the microbial community configuration in the paddy soil, including As-Cd detoxifying bacteria, and decreased bioavailable form of the MLs in the soil compared to the CON. The amendments also augmented Fe/Mn-plaque which captured a considerable quantity of As-Cd in comparison to the CON. In conclusion, the utilization of multifunctional biochar, such as MMEB and MMCEB, is an encouraging approach to diminish MLs aggregation in rice grain and increase rice yield for the reparation of paddy soils via transforming microbiota especially enhancing As-Cd detoxifying taxa, thereby improving agroecology, food security, and human and animal health.

3.
Sci Total Environ ; 904: 166687, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37659544

ABSTRACT

Marine periphytic ciliates play a pivotal role in shaping coastal ecosystems dynamics, thereby acting as robust biological indicators of aquatic ecosystem health and functionality. However, the understanding of the effects of veterinary antibiotics on composition and structure of periphytic ciliate communities remains limited. Therefore, this research investigates the influence of the veterinary antibiotic nitrofurazone on the community dynamics of marine periphytic ciliates through bioassay experiments conducted over a one-year cycle. Various concentrations of nitrofurazone were administered to the tested ciliate assemblages, and subsequent changes in community composition, abundance, and diversity were quantitatively analyzed. The research revealed significant alterations in periphytic ciliate communities following exposure to nitrofurazone. Concentration-dependent (0-8 mg L-1) decrease in ciliates abundance, accompanied by shifts in species composition, community structure, and community patterns were observed. Comprehensive assessment of diversity metrics indicated significant changes in species richness and evenness in the presence of nitrofurazone, potentially disrupting the stability of ciliate communities. Furthermore, nitrofurazone significantly influenced the community structure of ciliates in all seasons (winter: R2 = 0.489; spring: R2 = 0.666; summer: R2 = 0.700, autumn: R2 = 0.450), with high toxic potential in treatments 4 and 8 mg L-1. Differential abundances of ciliates varied across seasons and nitrofurazone treatments, some orders like Pleurostomatida were consistently affected, while others (i.e., Strombidida and Philasterida) showed irregular distributions or were evenly affected (e.g., Urostylida and Synhymeniida). Retrieved contrasting patterns between nitrofurazone and community responses underscore the broad response repertoire exhibited by ciliates to antibiotic exposure, suggesting potential cascading effects on associated ecological processes in the periphyton community. These findings significantly enhance the understanding of the ecological impacts of nitrofurazone on marine periphytic ciliate communities, emphasizing the imperative for vigilant monitoring and regulation of veterinary antibiotics to protect marine ecosystem health and biodiversity. Further research is required to explore the long-term effects of nitrofurazone exposure and evaluate potential strategies to reduce the ecological repercussions of antibiotics in aquatic environments, with a particular focus on nitrofurazone.


Subject(s)
Ciliophora , Ecosystem , Nitrofurazone/toxicity , Anti-Bacterial Agents/toxicity , Environmental Monitoring , Biodiversity
4.
Front Microbiol ; 14: 1172184, 2023.
Article in English | MEDLINE | ID: mdl-37256058

ABSTRACT

The gut microbiomes of arthropods have significant impact on key physiological functions such as nutrition, reproduction, behavior, and health. Spiders are diverse and numerically dominant predators in crop fields where they are potentially important regulators of pests. Harnessing spiders to control agricultural pests is likely to be supported by an understanding of their gut microbiomes, and the environmental drivers shaping microbiome assemblages. This study aimed to deciphering the gut microbiome assembly of these invertebrate predators and elucidating potential implications of key environmental constraints in this process. Here, we used high-throughput sequencing to examine for the first time how the assemblages of bacteria in the gut of spiders are shaped by environmental variables. Local drivers of microbiome composition were globally-relevant input use system (organic production vs. conventional practice), and crop identity (Chinese cabbage vs. cauliflower). Landscape-scale factors, proportion of forest and grassland, compositional diversity, and habitat edge density, also strongly affected gut microbiota. Specific bacterial taxa were enriched in gut of spiders sampled from different settings and seasons. These findings provide a comprehensive insight into composition and plasticity of spider gut microbiota. Understanding the temporal responses of specific microbiota could lead to innovative strategies development for boosting biological control services of predators.

5.
Sci Total Environ ; 874: 162405, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36858212

ABSTRACT

The use of functional traits of a community as a method to measure its functional dynamics in response to environmental change has gained attention because trait-based approaches offer systematic opportunities to understand the interactions between species diversity and ecosystem function. However, the relationship between functional traits of periphytic protozoa and contamination of aquatic habitats with antibiotics is poorly understood. In this study, we investigated the influence of the antibiotic nitrofurazone on functional traits of marine periphytic protozoan fauna. For this purpose, the protozoan assemblages were collected from coastal waters of the Yellow Sea at Qingdao, northern China, during four seasons of a one-year cycle using glass microscope slides as artificial substrates. The test protozoan communities were then exposed to various treatments of nitrofurazone in laboratory bioassay experiments. Our results demonstrated that the modalities of the functional traits of protozoan communities were generally driven by nitrofurazone toxicity. Briefly, R-mode linked to Q-mode (RLQ) and fourth-corner analyses revealed strong positive correlations between functional traits and nitrofurazone treatments. Trait syndromes in terms of body length, width, weight, height, and size to volume ratios were significantly influenced by nitrofurazone exposure. In particular, small and medium body size species of different feeding types, i.e., algivores, bacterivores, raptors or non-selectives, were more sensitive than other protozoan species to higher concentrations of nitrofurazone. Our findings demonstrate that antibiotic toxicity is likely to affect periphytic protozoan community function, shape the functional processes, and induce toxic responses in the community. The findings of this study suggest that periphytic protozoan communities and their functional traits are suitable bioindicators for evaluating the ecotoxicity of nitrofurazone in marine environments.


Subject(s)
Ciliophora , Ecosystem , Biodiversity , Nitrofurazone/toxicity , Environmental Monitoring/methods , Anti-Bacterial Agents/toxicity
6.
Foods ; 12(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36766112

ABSTRACT

Soft-shell crabs have attracted consumers' attention due to their unique taste and nutritional value. To evaluate the feasibility of harvest optimisation of soft-shell mud crabs, the proximate composition, mineral composition, and total carotenoid, amino acid, and fatty acid contents of edible parts of male and female soft-shell mud crabs at different moulting stages were determined and compared from a nutritional value perspective. The results showed that the sex and moulting stages could significantly affect the nutritional values of the edible portions of soft-shell crabs. The female or male soft-shell crabs in the postmoult Ⅰ stage had a much richer mineral element content than that in other moulting stages. The total carotenoid content in female soft-shell crabs was significantly higher than that in male crabs in all moulting stages, while male soft-shell crabs had better performance in amino acid nutrition than female soft-shell crabs. Moreover, it was found that soft-shell crabs in the postmoult Ⅱ stage had significantly higher contents of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), while significantly lower contents of saturated fatty acids (SFA) than those in other stages. The present study will provide a reference basis for the diversified cultivation of soft-shell crabs, and further promote the development of the mud crab industry.

7.
Pest Manag Sci ; 78(12): 5390-5401, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36057113

ABSTRACT

BACKGROUND: Understanding the networks of trophic interactions into which generalist predators are embedded is key to assessing their ecological role of in trophic networks and the biological control services they provide. The advent of affordable DNA metabarcoding approaches greatly facilitates quantitative understanding of trophic networks and their response to environmental drivers. Here, we examine how key environmental gradients interact to shape predation by Lycosidae in highly dynamic vegetable growing systems in China. RESULTS: For the sampled Lycosidae, crop identity, pesticide use and seasons shape the abundance of prey detected in spider guts. For the taxonomic richness of prey, local- and landscape-scale factors gradients were more influential. Multivariate ordinations confirm that these crop-abundant spiders dynamically adjust their diet to reflect environmental constraints and seasonal availability to prey. CONCLUSION: Plasticity in diet composition is likely to account for the persistence of spiders in relatively ephemeral brassica crops. Our findings provide further insights into the optimization of habitat management for predator-based biological control practices. © 2022 Society of Chemical Industry.


Subject(s)
Food Chain , Spiders , Animals , Seasons , DNA Barcoding, Taxonomic , Ecosystem , Predatory Behavior/physiology , Spiders/physiology , DNA
8.
Biology (Basel) ; 11(7)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-36101407

ABSTRACT

The lack of high-quality juvenile crabs is the greatest impediment to the growth of the mud crab (Scylla paramamosain) industry. To obtain high-quality hybrid offspring, a novel hybrid mud crab (S. serrata ♀ × S. paramamosain ♂) was successfully produced in our previous study. Meanwhile, an interesting phenomenon was discovered, that some first-generation (F1) hybrid offspring's eyestalks were displaced during the crablet stage I. To uncover the genetic mechanism underlying eyestalk displacement and its potential implications, both single-molecule real-time (SMRT) and Illumina RNA sequencing were implemented. Using a two-step collapsing strategy, three high-quality reconstructed transcriptomes were obtained from purebred mud crabs (S. paramamosain) with normal eyestalks (SPA), hybrid crabs with normal eyestalks (NH), and hybrid crabs with displaced eyestalks (DH). In total, 37 significantly differential alternative splicing (DAS) events (17 up-regulated and 20 down-regulated) and 1475 significantly differential expressed transcripts (DETs) (492 up-regulated and 983 down-regulated) were detected in DH. The most significant DAS events and DETs were annotated as being endoplasmic reticulum chaperone BiP and leucine-rich repeat protein lrrA-like isoform X2. In addition, the top ten significant GO terms were related to the cuticle or chitin. Overall, high-quality reconstructed transcriptomes were obtained for the novel interspecific hybrid crab and provided valuable insights into the genetic mechanisms of eyestalk displacement in mud crab (Scylla spp.) crossbreeding.

9.
J Agric Food Chem ; 70(36): 11179-11191, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36043275

ABSTRACT

Numerous herbivores orally secrete defense compounds to detoxify plant toxins. However, little is known about the role of orally secreted enzymes by a specialized pest, Plutella xylostella, in the detoxification of plant defense compounds. Three glucosinolate sulfatases (GSSs) or two sulfatase-modifying factors (SUMF1s) mutant strains were established on the basis of CRISPR/Cas9 technology to validate the existence of a species-specific GSSs-SUMF1s system. In comparison to the bioassay data from mutant strains of GSS1/GSS2 or SUMF1a/SUMF1b, GSS3 had a minimal role because no significant change was found in GSS3-/- under different feeding contexts. Antibody-based technologies were used to examine GSSs-related deficient strains, and the results showed that the GSS1 protein was primarily released through larval oral secretion. On the basis of high-performance liquid chromatography, we found that GSS1 was secreted to pre-desulfate the typical plant defensive glucosinolates known as 4-(methylsulfinyl)butyl glucosinolate (4MSOB-GL) to suppress the production of the toxic substance, which is referred to as pre-detoxification strategy. These findings highlighted that the GSSs-SUMF1s system is the key factor for counteradaptation of P. xylostella to cruciferous plants, which strengthens the concept that herbivores deploy pre-detoxification strategies to disrupt the plant chemical defenses to facilitate the colonization process.


Subject(s)
Glucosinolates , Moths , Animals , Glucosinolates/metabolism , Herbivory , Larva/metabolism , Moths/metabolism , Sulfatases/genetics
10.
Microorganisms ; 10(6)2022 Jun 12.
Article in English | MEDLINE | ID: mdl-35744721

ABSTRACT

The soil microbiome is crucial for improving the services and functioning of agroecosystems. Numerous studies have demonstrated the potential of soil physical-chemical properties in driving the belowground microbial assemblages in different agroecosystems. However, not much is known about the assemblage of bacteria and fungi in response to soil physical-chemical properties and the surrounding landscape composition in different vegetable fields of a highly intensive agricultural system. Here, we investigated the effects of soil physical-chemical properties and landscape composition on the community trends of bacteria and fungi in two different soil compartments (bulk and rhizospheric soils) of two different brassica crop types (Chinese cabbage and flower cabbage). The results revealed that bulk soil had a higher alpha diversity of both bacteria and fungi than rhizospheric soil. Each of the soil physical-chemical properties and landscape compositions contributed differently to driving the community structure of distinct bacterial and fungal taxa in both soil compartments and crop types. The higher proportions of forest, grassland, and cultivated land, along with the higher amount of soil calcium in flower cabbage fields, promote the assemblage of Gammaproteobacteria, Actinobacteria, Oxyophotobacteria, Agaricomycetes, and Eurotiomycetes. On the other hand, in Chinese cabbage fields, the increased amounts of iron, zinc, and manganese in the soil together with higher proportions of non-brassica crops in the surrounding landscape strongly support the assemblage of Deltaproteobacteria, Gemmatimonadetes, Bacilli, Clostridia, Alphaproteobacteria, an unknown bacterial species Subgroup-6, Mortierellomycetes, Rhizophlyctidomycetes, and Chytridiomycetes. The findings of this study provide the most comprehensive, comparative, and novel insights related to the bacterial and fungal responses in a highly intensive vegetable growing system for the improvement of the soil fertility and structure. These are important clues for the identification of key bacteria and fungi contributing to the plant-environment interactions and are of a practical significance for landscape-based ecological pest management.

11.
Aquat Toxicol ; 240: 105970, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34562875

ABSTRACT

Increasing salinity levels in marine and estuarine ecosystems greatly influence developmental, physiological and molecular activities of inhabiting fauna. Marine medaka (Oryzias melastigma), a euryhaline research model, has extraordinary abilities to survive in a wide range of aquatic salinity. To elucidate how marine medaka copes with salinity differences, the responses of Oryzias melastigma after being transferred to different salt concentrations [0 practical salinity units (psu), 15 psu, 30 psu (control), 45 psu] were studied at developmental, histochemical and transcriptome levels in the gill and liver tissues. A greater number of gills differentially expressed genes (DEG) under 0 psu (609) than 15 psu (157) and 45 psu (312), indicating transcriptomic adjustments in gills were more sensitive to the extreme hypotonic environment. A greater number of livers DEGs were observed in 45 psu (1,664) than 0 psu (87) and L15 psu (512), suggesting that liver was more susceptible to hypertonic environment. Further functional analyses of DEGs showed that gills have a more immediate response, mainly in adjusting ion balance, immune and signal transduction. In contrast, DEGs in livers were involved in protein synthesis and processing. We also identified common DEGs in both gill and liver and found they were mostly involved in osmotic regulation of amino sugar and nucleotide sugar metabolism and steroid biosynthesis. Additionally, salinity stresses showed no significant effects on most developmental and histochemical parameters except increased heartbeat with increasing salinity and decreased glycogen after transferred from stable conditions (30 psu) to other salinity environments. These findings suggested that salinity-stress induced changes in gene expressions could reduce the effects on developmental and histochemical parameters. Overall, this study provides a useful resource for understanding the molecular mechanisms of fish responses to salinity stresses.


Subject(s)
Oryzias , Animals , Ecosystem , Gene Expression Profiling , Gills , Liver , Oryzias/genetics , RNA-Seq , Salinity , Transcriptome
12.
Ecol Evol ; 11(14): 9543-9552, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34306641

ABSTRACT

Inter- and intra-guild interactions are important in the coexistence of predators and their prey, especially in highly disturbed vegetable cropping systems with sporadic food resources. Assessing the dietary range of a predator taxon characterized by diverse foraging behavior using conventional approaches, such as visual observation and conventional molecular approaches for prey detection, has serious logistical problems. In this study, we assessed the prey compositions and compare the dietary spectrum of a functionally diverge group of predators-spiders-to characterize their trophic interactions and assess biological control potential in Brassica vegetable fields. We used high-throughput sequencing (HTS) and biotic interaction networks to precisely annotate the predation spectrum and highlight the predator-predator and predator-prey interactions. The prey taxa in the gut of all spider families were mainly enriched with insects (including dipterans, coleopterans, orthopterans, hemipterans, and lepidopterans) with lower proportions of arachnids (such as Araneae) along with a wide range of other prey factions. Despite the generalist foraging behavior of spiders, the community structure analysis and interaction networks highlighted the overrepresentation of particular prey taxa in the gut of each spider family, as well as showing the extent of interfamily predation by spiders. Identifying the diverse trophic niche proportions underpins the importance of spiders as predators of pests in highly disturbed agroecosystems. More specifically, combining HTS with advanced ecological community analysis reveals the preferences and biological control potential of particular spider taxa (such as Salticidae against lepidopterans and Pisauridae against dipterans), and so provides a valuable evidence base for targeted conservation biological control efforts in complex trophic networks.

13.
Int J Mol Sci ; 21(17)2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32872681

ABSTRACT

Evolutionary and ecological forces are important factors that shape gut microbial profiles in hosts, which can help insects adapt to different environments through modulating their metabolites. However, little is known about how gut microbes and metabolites are altered when lepidopteran pest species switch hosts. In the present study, using 16S-rDNA sequencing and mass spectrometry-based metabolomics, we analyzed the gut microbiota and metabolites of three populations of Plutella xylostella: one feeding on radish (PxR) and two feeding on peas (PxP; with PxP-1 and PxP-17 being the first and 17th generations after host shift from radish to peas, respectively). We found that the diversity of gut microbes in PxP-17 was significantly lower than those in PxR and PxP-1, which indicates a distinct change in gut microbiota after host shift. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the functions of energy metabolism, signal transduction, and xenobiotics biodegradation and metabolism were increased in PxP-17, suggesting their potential roles in host adaptation. Metabolic profiling showed a significant difference in the abundance of gut metabolites between PxR and PxP-17, and significant correlations of gut bacteria with gut metabolites. These findings shed light on the interaction among plants, herbivores, and symbionts, and advance our understanding of host adaptation associated with gut bacteria and metabolic activities in P. xylostella.


Subject(s)
Bacteria/classification , Gastrointestinal Microbiome , Gastrointestinal Tract/metabolism , Host-Pathogen Interactions , Larva/metabolism , Metabolome , Raphanus/microbiology , Animals , Bacteria/metabolism , Gastrointestinal Tract/microbiology , Larva/microbiology , Moths , Phylogeny
14.
BMC Genomics ; 21(1): 640, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32938378

ABSTRACT

BACKGROUND: Marine medaka (Oryzias melastigma) is considered as an important ecotoxicological indicator to study the biochemical, physiological and molecular responses of marine organisms towards increasing amount of pollutants in marine and estuarine waters. RESULTS: In this study, we reported a high-quality and accurate de novo genome assembly of marine medaka through the integration of single-molecule sequencing, Illumina paired-end sequencing, and 10X Genomics linked-reads. The 844.17 Mb assembly is estimated to cover more than 98% of the genome and is more continuous with fewer gaps and errors than the previous genome assembly. Comparison of O. melastigma with closely related species showed significant expansion of gene families associated with DNA repair and ATP-binding cassette (ABC) transporter pathways. We identified 274 genes that appear to be under significant positive selection and are involved in DNA repair, cellular transportation processes, conservation and stability of the genome. The positive selection of genes and the considerable expansion in gene numbers, especially related to stimulus responses provide strong supports for adaptations of O. melastigma under varying environmental stresses. CONCLUSIONS: The highly contiguous marine medaka genome and comparative genomic analyses will increase our understanding of the underlying mechanisms related to its extraordinary adaptation capability, leading towards acceleration in the ongoing and future investigations in marine ecotoxicology.


Subject(s)
Genome , Oryzias/genetics , Animals , Contig Mapping , Evolution, Molecular , Multigene Family , Selection, Genetic , Sequence Alignment , Whole Genome Sequencing
15.
Sci Rep ; 10(1): 15130, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32934310

ABSTRACT

Both field- and landscape-scale factors can influence the predator communities of agricultural pests, but the relative importance and interactions between these scales are poorly understood. Focusing on spiders, an important taxon for providing biological control, we tested the influence of field- and landscape-scale factors on structuring the spider communities in a highly dynamic brassica agroecosystem. We found that local factors (pesticide-use and crop type) and forested landscape significantly influenced the abundance and species richness of spiders, whilst grassland patches significantly affected the spider species richness. Correlation results demonstrated that assemblage patterns of most spider families positively responded to the interplay between local factors and forest patches in the landscape. The spiders abundance was greatest in cauliflower crops surrounded with forest and grassland patches in landscape. Similarly, ordination analyses revealed that organic fields of cauliflower in forested landscapes had a strong positive association with the abundance and species richness of spiders. In contrast, insecticide and synthetic fertilizer-treated fields of Chinese cabbage in landscapes with little non-crop habitat reduced the abundance and species richness of spiders. Our results highlight the extent of interaction between local- and landscape-scale factors, help explain recently reported inconsistent effects of landscape factors on conservation biological control.


Subject(s)
Biodiversity , Crops, Agricultural/growth & development , Ecosystem , Environmental Monitoring , Spiders/classification , Spiders/physiology , Animals
16.
Front Microbiol ; 11: 1519, 2020.
Article in English | MEDLINE | ID: mdl-32760366

ABSTRACT

Endophytic fungi are important in diverse plant functions but knowledge of the factors that shape assemblages of these symbionts is lacking. Here, using a culture-dependent approach, we report 4,178 endophytic fungal isolates representing 16 orders isolated from stems, roots and leaves of three cruciferous plant species, Chinese cabbage (Brassica rapa L.), radish (Raphanus sativus L.) and white cabbage (B. olerocea L.), collected from 21 focal fields with different landscape contexts and pesticide uses during four seasons (summer, autumn, winter and spring). The colonization rate of fungi was found to be most strongly affected by season, plant identity and plant tissue. The colonization was highest during autumn, followed by summer, spring and lowest during winter. The colonization was highest in B. olerocea (53.2%), followed by B. rapa (42.6%), and lowest in R. sativus (35.0%). The colonization was highest in stems (51.9%) in all plant types, followed by leaves (42.4%) and roots (37.5%). Hypocreales was the dominant order (33.3% of all the isolates), followed by Glomerellales (26.5%), Eurotiales (12.1%), Pleosporales (9.8%) and Capnodiales (6.0%). Fungal endophyte abundance (number of isolates) followed the same pattern as colonization rate, while species richness varied with season and host plant tissue. Ordination analyses showed that the abundance and richness of Hypocreales, Eurotiales and Sordariales were associated with plant roots, while Capnodiales, Pleosporales and Trichosphaeriales were associated with spring. Other environmental factors, elevation, and the proportions of grassland, forest, orchard and waterbodies in the surrounding landscape also exerted effects within some categories of other main effects or for certain fungal taxa. Our results indicate that while fungal endophyte communities of crucifer crops vary strongly with the season, they are also strongly structured by plant identity and plant tissue, to a lesser extent by pesticide use and only weakly by landscape composition. The understanding of the ecological roles of fungal endophytes could contribute to habitat management and consequently improve crop pest management.

17.
Front Microbiol ; 11: 1620, 2020.
Article in English | MEDLINE | ID: mdl-32754145

ABSTRACT

As one of the most detrimental citrus pests worldwide, the citrus red mite, Panonychus citri (McGregor), shows extraordinary fecundity, polyphagia, and acaricide resistance, which may be influenced by microbes as other arthropod pests. However, the community structure and physiological function of microbes in P. citri are still largely unknown. Here, the high-throughput sequencing of 16S rDNA amplicons was employed to identify and compare the profile of bacterial communities across the larva, protonymph, deutonymph, and adult stages of P. citri. We observed a dominance of phylums Proteobacteria and Firmicutes, and classes α-, γ-, ß-Proteobacteria and Bacilli in the bacterial communities across the host lifespan. Based on the dynamic analysis of the bacterial community structure, a significant shift pattern between the immature (larva, protonymph, and deutonymph) and adult stages was observed. Accordingly, among the major families (and corresponding genera), although the relative abundances of Pseudomonadaceae (Pseudomonas), Moraxellaceae (Acinetobacter), and Sphingobacteriaceae (Sphingobacterium) were consistent in larva to deutonymph stages, they were significantly increased to 30.18 ± 8.76% (30.16 ± 8.75%), 20.78 ± 10.86% (18.80 ± 10.84%), and 11.71 ± 5.49% (11.68 ± 5.48%), respectively, in adult stage, which implied the important function of these bacteria on the adults' physiology. Actually, the functional prediction of bacterial communities and Spearman correlation analysis further confirm that these bacteria had positively correlations with the pathway of "lipid metabolism" (including eight sublevel pathways) and "metabolism of cofactors and vitamins" (including five sublevel pathways), which all only increased in adult stages. In addition, the bacterial communities were eliminated by using broad-spectrum antibiotics, streptomycin, which significantly suppressed the survival and oviposition of P. citri. Overall, we not only confirmed the physiological effects of bacteria community on the vitality and fecundity of adult hosts, but also revealed the shift pattern of bacterial community structures across the life stages and demonstrated the co-enhancements of specific bacterial groups and bacterial functions in nutritional metabolism in P. citri. This study sheds light on basic information about the mutualism between spider mites and bacteria, which may be useful in shaping the next generation of control strategies for spider mite pests, especially P. citri.

18.
Insect Biochem Mol Biol ; 119: 103316, 2020 04.
Article in English | MEDLINE | ID: mdl-31953191

ABSTRACT

Evolutionary adaptations of herbivorous insects are often dictated by the necessity to withstand a corresponding evolutionary innovation in host plant defense. Glucosinolate sulfatase (GSS) enzyme activity is considered a central adaptation strategy in Plutella xylostella against glucosinolates (GS)-myrosinase defense system in the Brassicales. The high functional versatility of sulfatases suggests that they may perform other vital roles in the process of growth and development. Here, we used a CRISPR/Cas9 system to generate stable homozygous single/double mutant lines of gss1 or/and gss2 with no predicted off-target effects, to analyze the functions of the pair of duplicated genes in the development and host adaptation of P. xylostella. The bioassays showed that, when fed on their usual artificial diet, significant reduction in egg hatching rate and final larval survival rate of the single mutant line of gss2 compared with the original strain or mutant lines of gss1, revealing unexpected functions of GSS2 in embryonic and larval development. When larvae of homozygous mutant lines were transferred onto a new food, Arabidopsis thaliana, no induced effect at protein level of GSS1/2 or gene expression level of gss1/gss2 was detected. The absence of GSS1 or GSS2 reduced the survival rate of larvae and prolonged the duration of the larval stage, indicating that both GSS1 and GSS2 played an important role in adaptation to host plants. The versatile functions of duplicated GSSs in this study provide a foundation for further research to understand potential functions of other sulfatase members and support evidence of adaptation in herbivorous insects.


Subject(s)
Adaptation, Biological , Genes, Insect , Insect Proteins/genetics , Moths/genetics , Sulfatases/genetics , Animals , CRISPR-Cas Systems , Female , Gene Duplication , Glucosinolates/metabolism , Insect Proteins/metabolism , Larva/enzymology , Larva/genetics , Larva/growth & development , Male , Moths/enzymology , Moths/growth & development , Mutation , Sulfatases/metabolism
19.
Arch Insect Biochem Physiol ; 102(2): e21600, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31328824

ABSTRACT

DNA methylation exerts extensive impacts on gene expression of various living organisms exposed to environmental variation. However, little is known whether DNA methylation is involved in the host transfer of diamondback moth, Plutella xylostella (L.), a worldwide destructive pest of crucifers. In this study, we found that P. xylostella genome exhibited a relatively low level of DNA methylation on the basis of the CpG O/E prediction and experimental validation. A significant positive linear correlation was observed between the stage-specific expressions of PxDNMT1 and DNA methylation levels (5mC content). Particularly, high levels of DNA methylation and gene expression of PxDNMT1 were observed in eggs and mature females of P. xylostella. After host transfer of P. xylostella from Raphanus sativus to Arabidopsis thaliana, we identified some potential genomic loci that might have changed methylation levels. Using the method of fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP), we also found the corresponding genes primarily involved in neural system and signaling. The expressions of six candidate genes were verified by qRT-PCR. One of the genes, Px009600, might be regulated by a DNA methylation-mediated mechanism in response to host transfer. Our study provides evidence for a functional system of DNA methylation in P. xylostella and its possible role in adaptation during host transfer. Further studies should examine methylation as responsive factors to different host plants and environmental cues in insect pests.

20.
Genome Biol Evol ; 10(2): 473-488, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29378032

ABSTRACT

Conserved noncoding sequences (CNSs) are evolutionarily conserved DNA sequences that do not encode proteins but may have potential regulatory roles in gene expression. CNS in crop genomes could be linked to many important agronomic traits and ecological adaptations. Compared with the relatively mature exon annotation protocols, efficient methods are lacking to predict the location of noncoding sequences in the plant genomes. We implemented a computational pipeline that is tailored to the comparisons of plant genomes, yielding a large number of conserved sequences using rice genome as the reference. In this study, we used 17 published grass genomes, along with five monocot genomes as well as the basal angiosperm genome of Amborella trichopoda. Genome alignments among these genomes suggest that at least 12.05% of the rice genome appears to be evolving under constraints in the Poaceae lineage, with close to half of the evolutionarily constrained sequences located outside protein-coding regions. We found evidence for purifying selection acting on the conserved sequences by analyzing segregating SNPs within the rice population. Furthermore, we found that known functional motifs were significantly enriched within CNS, with many motifs associated with the preferred binding of ubiquitous transcription factors. The conserved elements that we have curated are accessible through our public database and the JBrowse server. In-depth functional annotations and evolutionary dynamics of the identified conserved sequences provide a solid foundation for studying gene regulation, genome evolution, as well as to inform gene isolation for cereal biologists.


Subject(s)
Evolution, Molecular , Genome, Plant , Poaceae/genetics , Base Sequence , Conserved Sequence , DNA, Plant/genetics , Gene Expression Regulation, Plant , Genomics , Magnoliopsida/genetics , Phylogeny , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Untranslated Regions
SELECTION OF CITATIONS
SEARCH DETAIL
...