Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 11(9): 4874-4886, 2021 May.
Article in English | MEDLINE | ID: mdl-33976855

ABSTRACT

The ecological success of ants has made them abundant in most environments, yet inter- and intraspecific competition usually limit nest density for a given population. Most invasive ant populations circumvent this limitation through a supercolonial structure, eliminating intraspecific competition through a loss of nestmate recognition and lack of aggression toward non-nestmates. Native to South America, Brachymyrmex patagonicus has recently invaded many locations worldwide, with invasive populations described as extremely large and dense. Yet, in contrast with most invasive ants, this species exhibits a multicolonial structure, whereby each colony occupies a single nest. Here, we investigated the interplay between genetic diversity, chemical recognition, and aggressive behaviors in an invasive population of B. patagonicus. We found that, in its invasive range, this species reaches a high nest density with individual colonies located every 2.5 m and that colony boundaries are maintained through aggression toward non-nestmates. This recognition and antagonism toward non-nestmates is mediated by chemical differentiation between colonies, as different colonies exhibit distinct chemical profiles. We highlighted that the level of aggression between colonies is correlated with their degree of genetic difference, but not their overall chemical differentiation. This may suggest that only a few chemical compounds influence nestmate recognition in this species or that weak chemical differences are sufficient to elicit aggression. Overall, this study demonstrates that invasive ant populations can reach high densities despite a multicolonial structure with strong aggression between colonies, raising questions about the factors underlying their ecological success and mitigating negative consequences of competitive interactions.

2.
J Econ Entomol ; 107(5): 1878-89, 2014 10 01.
Article in English | MEDLINE | ID: mdl-26309278

ABSTRACT

Intrinsic toxicities of chlorantraniliprole, fipronil, and imidacloprid were evaluated with topical applications on worker termites. Worker termites were exposed to substrates treated with formulated chlorantraniliprole to study contact toxicity, tunneling, and postexposure behaviors. The intrinsic toxicities (LD50, ng/termite) of chlorantraniliprole (1.25, 0.96, and 0.44) and fipronil (0.12, 0.11, and 0.13) at 11 d were similar for workers from three termite colonies. Imidacloprid toxicity (LD50) values were highly variable among the workers from three different colonies, values at 11 d ranging from 0.7 to 75 ng/termite. Termite workers exposed to sand and soils treated with chlorantraniliprole at 50 ppm exhibited delayed mortality and, for most of the exposure times, it took >5 d to observe 90-100% mortality in termite workers. Exposure to chlorantraniliprole-treated sand (50 ppm) for as little as 1 min stopped feeding and killed 90-100% of the workers. Tunneling (≈ 2 h) in different soil types treated with chlorantraniliprole at 50 ppm, even those with high organic matter (6.3%) and clay content (30%), caused immediate feeding cessation in worker termites and mortality in the next 7-14 d. Worker termites exposed for 1 and 60 min to sand treated with chlorantraniliprole (50 ppm) were able to walk normally for 4 h after exposure in most cases. Delayed toxicity, increased aggregation, and grooming were observed in exposed termites and discussed in the context of horizontal transfer effects within termite colonies.


Subject(s)
Imidazoles , Insect Control , Insecticides , Isoptera , Nitro Compounds , Pyrazoles , ortho-Aminobenzoates , Administration, Topical , Animals , Behavior, Animal/drug effects , Dose-Response Relationship, Drug , Lethal Dose 50 , Neonicotinoids , Soil/chemistry
3.
J Econ Entomol ; 106(2): 945-53, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23786086

ABSTRACT

Indoxacarb, a sodium channel-blocking insecticide, has been in widespread use for German cockroach control in the United States since 2006. A two-tiered indoxacarb susceptibility monitoring strategy was previously developed as a first step toward determining indoxacarb susceptibility levels in German cockroach field populations. This strategy entails: (tier 1) testing field-collected populations in vial bioassays at two diagnostic concentrations; and (tier 2) testing populations at three diagnostic doses in oral (feeding) bioassays with treated bait matrix. In the current study the two-tiered technique was implemented to evaluate field (n = 14) and susceptible laboratory (n = 2) strains collected from 13 different U.S. locations. Our hypothesis was that at least some of the field-collected populations would display significant survivorship in both bioassays relative to susceptible laboratory populations. In agreement with this hypothesis, significantly reduced susceptibility was detected in 13 and 7 field strains with vial and feeding bioassays, respectively. In general, the lower number of strains displaying reduced susceptibility in feeding bioassays (seven strains) supports previous findings that indoxacarb is more toxic via ingestion. Although these findings suggest a reduced risk for resistance selection via feeding on indoxacarb-containing baits, they also suggest a need for proactive resistance management with respect to both spray and bait products.


Subject(s)
Blattellidae/drug effects , Insect Control/methods , Insecticides/pharmacology , Oxazines/pharmacology , Animals , Blattellidae/genetics , Insecticide Resistance/drug effects , Selection, Genetic
4.
J Econ Entomol ; 101(4): 1373-83, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18767750

ABSTRACT

Degradation and bioavailability of imidacloprid, fipronil, and bifenthrin applied at label rates ([AI], wt:wt in soil) in the loamy soil of Nebraska were determined over a 6-mo duration. Based on the calculated half-lives of the three termiticides, it was concluded that the degradation rate was lowest when a termiticide was applied at the highest label rate. Bioassays of Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae) conducted at 8, 31, 65, 90, 135, 160, and 180 d posttreatment showed an inverse relationship between the LT90 values and the variable concentrations. At day 180, exposures to all the termiticide-treated soil samples (concentration x termiticide) resulted in 100% mortality of R. flavipes workers. However, lower LT90 values were observed for termites exposed to soils treated with highest label rates even when the treated soils were aged in the lab for 6 mo. This suggested a higher bioavailability of these three termiticides when applied at higher application rates. Termite mortality was fastest for bifenthrin followed by fipronil and imidacloprid.


Subject(s)
Insecticides/analysis , Isoptera , Pesticide Residues/analysis , Soil/analysis , Animals , Biological Availability , Environment , Half-Life , Imidazoles/analysis , Insecticides/administration & dosage , Insecticides/pharmacokinetics , Neonicotinoids , Nitro Compounds/analysis , Pyrazoles/analysis , Pyrethrins/analysis
5.
J Econ Entomol ; 101(3): 873-9, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18613589

ABSTRACT

Western subterranean termite, Reticulitermes hesperus Banks (Isoptera: Rhinotermitidae), workers fed more on paper disks treated with the carbohydrates xylose, ribose, and fructose than on untreated disks. This feeding behavior of termites for certain carbohydrates was used to demonstrate an increase in the uptake and transfer of the insect growth regulator hexaflumuron among termites. The addition of 3% xylose to paper disks significantly increased the uptake of [14C]hexaflumuron and its subsequent transfer to other termites. Similarly, there was a significant increase in mortality of termites fed on paper disks treated with [14C]hexaflumuron (0.1 and 0.5%) in combination with 3% xylose for similar time periods compared with termites feeding on [14C]hexaflumuron (0.1 and 0.5%) alone. Overall percentage of mortality of termites feeding on [14C]hexaflumuron in combination with 3% xylose during the duration of the study (25-30 d) was approximately equal to 70%.


Subject(s)
Benzamides/metabolism , Isoptera/growth & development , Phenylurea Compounds/metabolism , Animal Feed , Animals , Biological Transport , California , Dietary Carbohydrates/metabolism , Juvenile Hormones/metabolism
6.
J Econ Entomol ; 100(2): 495-508, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17461076

ABSTRACT

The potential horizontal transfer ofnonrepellent termiticides has become an important paradigm to control termites in recent years. In this study, 14C-radiolabeled fipronil was used in a series of laboratory experiments to demonstrate the extent and ability of termites to transfer lethal amounts of fipronil to unexposed nestmates. Fipronil is an active and nonrepellent termiticide against western subterranean termites, Reticulitermes hesperus Banks, on sand at relevant doses. It exhibited delayed toxicity with the lowest LD50 approximately 0.2 ng/termite expressed between day 4 and 7. Both continuous and brief exposures to fipronil-treated sand seriously impaired the termite's ability to move and respond to a dodecatrienol trail, limiting potential horizontal transfer. In tunneling studies, fipronil prevented termite tunneling at concentrations as low as 0.5 ppm and was nonrepellent even at 500 ppm. Greater than 90% mortality was recorded by day 7 with concentrations ranging from 0.5 to 500 ppm. There was a linear relationship between the time of exposure and uptake of [14C]fipronil when termites were continuously exposed to 0.5, 1.0, and 5.0 ppm for 24 h. However, uptake discontinued when the termites were immobilized. Maximum transfer of fipronil from donors to recipients occurred within the first 24 h. Fipronil was transferred by body contact and trophallaxis did not play a major role in horizontal transfer. In successive transfer studies, there was not enough fipronil on recipients for them to serve as secondary donors and kill other termites. In a linear arena study, there was an inverse relationship between the amount offipronil on dead termites and their distance from the treated zone. Maximum mortality was observed within 1.5 m from the treated zone. Results in our laboratory studies suggest that horizontal transfer was not a major factor contributing to the efficacy of fipronil in the field.


Subject(s)
Insecticides , Isoptera/metabolism , Pyrazoles , Animals , Behavior, Animal/drug effects , Insecticides/metabolism , Insecticides/pharmacology , Pyrazoles/metabolism , Pyrazoles/pharmacology , Toxicity Tests
7.
J Chem Ecol ; 33(2): 369-89, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17200889

ABSTRACT

Trail pheromones mediate communication among western subterranean termites, Reticulitermes hesperus Banks. Repetitive passages of >or=28 termites were required to establish a pheromone trail and trails needed to be reinforced because they lasted <48 hr. The minimal threshold concentration for inducing responses from termite workers and secondary reproductives was between 0.01 and 0.1 fg/cm of (3Z,6Z,8E)-dodecatrien-1-ol (henceforth, dodecatrienol). Workers showed optimal trail-following behavior to dodecatrienol at a concentration of 10 fg/cm. Trails with concentrations >10 pg/cm were repellent to workers. Workers did not detect pheromone gradients, responding equally to increasing or decreasing gradients of dodecatrienol, and termite workers were not able to differentiate between different concentrations of dodecatrienol. Termites preferred dodecatrienol trails to 2-phenoxyethanol trails. Antennae played a key role in trail pheromone perception. Dodecatrienol acted as an arrestant for worker termites (10 fg/cm2) and male alates (5 ng/cm2), whereas sternal gland extracts from females attracted male alates. Workers and alates, upon contact with filter paper disks treated with higher doses (10 fg/cm2 and 5 ng/cm2, respectively) of dodecatrienol, were highly excited (increased antennation and palpation) and repeatedly returned to the treated disks. Dodecatrienol did not act as a phagostimulant when offered on a paper towel disk. Reticulitermes hesperus is highly responsive to dodecatrienol, and it may play an important role in orientation of workers and alates.


Subject(s)
Behavior, Animal/physiology , Isoptera/physiology , Animals , Biological Assay/methods , Feeding Behavior/physiology , Female , Male , Pheromones/physiology , Polyenes , Sexual Behavior, Animal/physiology
8.
J Econ Entomol ; 99(3): 864-72, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16813323

ABSTRACT

Chlorfenapyr is a slow-acting insecticide against western subterranean termite, Reticulitermes hesperus Banks, when applied to sand. The LD50 at day 7 for workers is 29.98 ng per termite and considerably higher than that of chlorpyrifos (14.01), cypermethrin (3.21), and fipronil (0.16). Brief exposures to sand treated with chlorfenapyr resulted in dose-dependent mortality over a broad range of concentrations. Brief 1-h exposures to > or =75 ppm provided >88% kill of termites at day 7. Chlorfenapyr deposits did not repel termites, even at 300 ppm. Termites tunneled from 0.1 to 1.8 cm into sand treated with 10- to 300-ppm chlorfenapyr deposits, resulting in > or =70% mortality. Within 1 h after being exposed to 50 ppm chlorfenapyr, approximately 17% of the termites exhibited impaired responses to synthetic trail pheromone. By 4 h, nearly 60% of the workers were not able to follow a 10 fg/cm pheromone trail. There was a direct linear relationship of the uptake of [14C]chlorfenapyr as concentration and duration of exposure increased. The percentage of chlorfenapyr transferred to recipients varied from 13.3 to 38.4%. Donors exposed for 1 h transferred a greater percentage of chlorfenapyr than did donors exposed for 4 h. A 1-h exposure on 100-ppm deposits provided sufficient uptake to kill 100% of the donors and sufficient transfer to kill 96% of the recipients. There was not enough transfer for recipients to serve as secondary donors and kill other termites. Horizontal transfer is limited to contact with the original donor and by the decreased mobility of workers within 4-8 h after exposure to treated sand. The effectiveness of chlorfenapyr barrier treatments is primarily due to its nonrepellency and delayed toxicity.


Subject(s)
Behavior, Animal , Insecticides , Isoptera , Pyrethrins , Animals , Carbon Radioisotopes , Soil , Time Factors
9.
J Econ Entomol ; 98(4): 1284-93, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16156582

ABSTRACT

Western subterranean termite, Reticulitermes hesperus (Banks), prefers various mono-, di-, and trisaccharides, total feeding being the greatest on paper disks treated with 5% ribose followed by 3% xylose, 2% maltose, 2% fructose, 2% arabinose, and 2% ribose. In multiple choice tests, termites were not able to discriminate between 2% ribose, 2% fructose, 2% xylose, and 2% maltose. Termites readily take up [14C] sucrose in feeding studies. Most of the sucrose is used as an energy source for respiration (89.2%), a very small proportion remains within the termite (9.3%), and an even smaller amount is excreted as solid waste (1.5%). The amount of 14C label transferred to other colony members via trophallaxis, body contact, or grooming is small and directly dependent upon the time and numbers of donors and recipients. At day 15 postmixing, the percentage of transfer was highest, 14.4 and 15.1% for both 1:1 and 2:1 donor to recipient mixing ratios, respectively. The mean amount of labeled 14C received by recipients increased from seven disintegrations per minute (dpm) on day 2 to 30 dpm on day 15 for 1:1. Overall mean radioactivity recovered from recipient termites when mixed with donor termites at 1:1 ratio (20 dpm) was significantly less than (28 dpm) when mixed with donor termites at 2:1 ratio. Sugars act as phagostimulants to the termites at concentrations much higher to those that termites naturally encounter in wood. Termites readily metabolize carbohydrates such as sucrose, and thus their use in bait matrices may increase consumption and retention at bait stations.


Subject(s)
Carbohydrate Metabolism , Isoptera/physiology , Animals , Carbon Radioisotopes , Feeding Behavior , Insect Control/methods , Isoptera/metabolism , Oxygen Consumption
SELECTION OF CITATIONS
SEARCH DETAIL