Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37018652

ABSTRACT

A highly active and stable Cu-based catalyst for CO2 to CO conversion was demonstrated by creating a strong metal-support interaction (SMSI) between Cu active sites and the TiO2-coated dendritic fibrous nano-silica (DFNS/TiO2) support. The DFNS/TiO2-Cu10 catalyst showed excellent catalytic performance with a CO productivity of 5350 mmol g-1 h-1 (i.e., 53,506 mmol gCu-1 h-1), surpassing that of almost all copper-based thermal catalysts, with 99.8% selectivity toward CO. Even after 200 h of reaction, the catalyst remained active. Moderate initial agglomeration and high dispersion of nanoparticles (NPs) due to SMSI made the catalysts stable. Electron energy loss spectroscopy confirmed the strong interactions between copper NPs and the TiO2 surface, supported by in situ diffuse reflectance infrared Fourier transform spectroscopy and X-ray photoelectron spectroscopy. The H2-temperature programmed reduction (TPR) study showed α, ß, and γ H2-TPR signals, further confirming the presence of SMSI between Cu and TiO2. In situ Raman and UV-vis diffuse reflectance spectroscopy studies provided insights into the role of oxygen vacancies and Ti3+ centers, which were produced by hydrogen, then consumed by CO2, and then again regenerated by hydrogen. These continuous defect generation-regeneration processes during the progress of the reaction allowed long-term high catalytic activity and stability. The in situ studies and oxygen storage complete capacity indicated the key role of oxygen vacancies during catalysis. The in situ time-resolved Fourier transform infrared study provided an understanding of the formation of various reaction intermediates and their conversion to products with reaction time. Based on these observations, we have proposed a CO2 reduction mechanism, which follows a redox pathway assisted by hydrogen.

2.
Small ; 18(21): e2107572, 2022 05.
Article in English | MEDLINE | ID: mdl-35285140

ABSTRACT

Amongst various futuristic renewable energy sources, hydrogen fuel is deemed to be clean and sustainable. Electrochemical water splitting (EWS) is an advanced technology to produce pure hydrogen in a cost-efficient manner. The electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the vital steps of EWS and have been at the forefront of research over the past decades. The low-cost nanostructured metal phosphide (MP)-based electrocatalysts exhibit unconventional physicochemical properties and offer very high turnover frequency (TOF), low over potential, high mass activity with improved efficiency, and long-term stability. Therefore, they are deemed to be potential electrocatalysts to meet practical challenges for supporting the future hydrogen economy. This review discusses the recent research progress in nanostructured MP-based catalysts with an emphasis given on in-depth understanding of catalytic activity and innovative synthetic strategies for MP-based catalysts through combined experimental (in situ/operando techniques) and theoretical investigations. Finally, the challenges, critical issues, and future outlook in the field of MP-based catalysts for water electrolysis are addressed.


Subject(s)
Nanostructures , Water , Catalysis , Hydrogen/chemistry , Metals , Nanostructures/chemistry , Water/chemistry
3.
ChemSusChem ; 7(2): 529-35, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24634951

ABSTRACT

We report an efficient protocol for the synthesis of monodisperse crystals of an aluminum (Al)-based metal organic framework (MOF) while obtaining excellent control over the size and shape solely by tuning of the reaction parameters without the use of a template or structure-directing agent. The size of the hexagonal crystals of the Al-MOF can be selectively varied from 100 nm to 2000 nm by simply changing the reaction time and temperature via its nucleation-growth mechanism. We also report a self-assembly phenomenon, observed for the first time in case of Al-MOF, whereby hollow spheres of Al-MOF were formed by the spontaneous organization of triangular sheet building blocks. These MOFs showed broad hysteresis loops during the CO2 capture, indicating that the adsorbed CO2 is not immediately desorbed upon decreasing the external pressure and is instead confined within the framework, which allows for the capture and subsequent selective trapping of CO2 from gaseous mixtures.


Subject(s)
Aluminum/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Carbon Dioxide/chemistry , Chemistry Techniques, Synthetic , Solvents/chemistry , Temperature
4.
J Hazard Mater ; 173(1-3): 576-80, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19758754

ABSTRACT

In this article we report recovery of mesoporous silica from the waste material (hexafluorosilicic acid) of phosphate fertilizer industry. The process involves the reaction of hexafluorosilicic acid (50 ml, 24 wt% H(2)SiF(6)) and 100ml, 0.297 M Na(2)CO(3) to generate the alkaline aqueous slurry. Silica was separated from the slurry by filtration and the sodium fluoride was extracted from the aqueous solution by evaporation method. The obtained mesoporous silica was characterized by N(2) absorption/desorption (BET), thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscope (SEM), and EDS. The results confirm that the separation of silica and NaF was successful and the final products have high purity. The silica product was found to have an average pore diameter of 4.14 nm and a high surface area (up to 800 m(2)/g). The process reported in this study may significantly reduce the release of hazardous materials into the environment and it might confer economic benefits to the responsible industries.


Subject(s)
Fertilizers/analysis , Fluorides/analysis , Industrial Waste/analysis , Silicic Acid/analysis , Silicon Dioxide/analysis , Electrochemistry , Hydrogen-Ion Concentration , Indicators and Reagents , Industry , Microscopy, Electron, Scanning , Nitrogen/chemistry , Porosity , Sodium Fluoride/chemistry , Surface Properties , Thermogravimetry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...